Madison Avenue Transportatio	n Study
FINAL REPORT July 2008	
	Prepared for: City of Covington
	Prepared by: NKAPC
	City of Covington
	NKAPC

Table of Contents

Introduction	1
Existing Conditions	3
Future Conditions	9
Alternatives	
Public Involvement	
Recommendation	20

List of Figures

Figure 1: 3-lane Cross Section (The Corradino Group, 2005)	1
Figure 2: Existing and Proposed KY 16/17 Route	2
Figure 3: AM and PM Peak Hour Turning Movements	4
Figure 4: TANK Stop Analysis	7
Figure 5: Redistributed AM and PM Peak Hour Turning Movements	10
Figure 6: Alternative 1 Cross-Section	12
Figure 7: Alternative 2 Cross-Section	14
Figure 8: Alternative 3 Cross-Section	16
Figure 9: Public Rating by Alternative	17

List of Tables

Table 1: Existing Conditions LOS Analysis	5
Table 2: Public Involvement Response Summary	18
Table 3: Alternative Evaluation	19
Table A-1: Unsignalized Intersection Level-of-Service Descriptions	2
Table A-2: Signalized Intersection Level-of-Service Descriptions	2
Table A-3: Capacity Analysis Summary	4

List of Appendices

Appendix A: Traffic Data

Appendix B: Capacity Analysis

Appendix C: Recommended Alternative

Introduction

The purpose of this document is to present and discuss streetscape alternatives for Madison Avenue in Covington, KY between the 26th Street and 19th Street. This report presents details of potential alternatives, and addresses operational performance, safety performance and evaluates other concerns such as impacts on transit service, on-street parking and pedestrian safety concerns specifically in the area surrounding Holmes High School between 25th Street and 26th Street.

The Madison Avenue Corridor Redevelopment Plan, prepared by The Corradino Group in April 2005, previously evaluated the corridor. The plan recommended that the existing 4-lane cross-section be reconfigured into a 3-lane section with one travel lane in each direction, a center turn lane and parking on one side of the street. **Figure 1** shows the proposed cross section from the redevelopment plan.

Figure 1: 3-lane Cross Section (The Corradino Group, 2005)

Preliminary analysis of the corridor indicated that the 3-lane section proposed by the corridor redevelopment can operate well on the entire corridor between 12th Street and 26th Street. However, operational problems would be present at the KY 16/17 split at 26th Street with the cross-section, as it would require a reduction in the number of northbound lanes. Therefore, this study aims to identify a transitional cross section for the southern portion of the Madison Avenue corridor between 19th Street and 26th Street and to further development design details of the proposed Form District.

Recent plans by the City of Covington and the Kentucky Transportation Cabinet include rerouting of KY 16/17 off of Sterrett Avenue and Wallace Avenue further to the north to 20th Street. The proposed route will remove traffic from the Wallace Woods neighborhood and redistribute it back onto Madison Avenue to 20th Street. **Figure 2** shows the existing and proposed routing of KY 16/17. In addition to the current rerouting of KY 17, The Austenburg Neighborhood Development Plan, which was adopted by the city of Covington, recommends removal of KY 17 from Scott Street and Greenup Street with KY 17 being routed along Madison Avenue up to 12th Street.

Figure 2: Existing and Proposed KY 16/17 Route

The Steering Committee assembled to guide the Zoning Overlay for the Madison Avenue Corridor identified other concerns in addition to operational issues . These included bus blockages of through traffic on Madison Avenue, and a significant concern for pedestrian safety in the area surrounding Holmes High School. Additionally, on-street parking in the area is at a premium and the proposed streetscape will ultimately affect parking, which must be addressed within the zoning overlay.

Madison Avenue Corridor Study

City of Covington NKAPC

Existing Conditions

Madison Avenue between 19th Street and 26th Street maintains a 4-lane cross section with 2 travel lanes in each direction. The total pavement width through the section is 40 feet, providing for 4 narrow 10-foot lanes. On-street parking in the outside travel lane is permitted north of Sterrett Avenue off of the State maintained route. Parking is time restricted with no parking between 4:00 to 6:00 p.m. Monday through Friday.

Data collected by the Corridor Redevelopment Plan recorded traffic volumes of approximately 20,000 vehicles per day (vpd) south of Sterrett and Wallace Avenues, on the state maintained portion of the corridor. North of Wallace Avenue volumes reduce significantly to approximately 13,500 vpd. As part of this study, updated AM and PM peak hour traffic counts were conducted at the eight major intersections listed below. All counts were conducted on December 18, 2007 between the hours of 7 a.m. and 9 a.m. and 4 p.m. and 6 p.m. **Figure 3** summarizes the peak hour turning movement counts. Raw data collected on the corridor is provided in **Appendix A**.

- Madison Avenue at 26th Street (KY 16/17 Split)
- Madison Avenue at Levassor Avenue
- Madison Avenue at Sterrett Avenue
- Madison Avenue at Wallace Avenue
- Madison Avenue at 20th Street
- Madison Avenue at 19th Street
- Eastern Avenue at James Avenue (KY 16)
- Eastern Avenue at Levassor Avenue

Comparing the collected data to the 2004 counts from the Madison Avenue Redevelopment Plan it is noted that traffic volumes have remained relatively stable. However, turning movements at the critical intersection of Madison Avenue at the KY 16/KY 17 split are shown to increase by approximately 100 vehicles per hour (vph) on KY 16.

Capacity Analysis was conducted for the AM and PM peak hours to estimate existing delays on the corridor. Analysis was conducted using HCM algorithms as applied by Synchro Version 5. The results of the analysis are presented in **Table 1**. The primary capacity constraint on the corridor is the KY 16/17 split at 26th Street. This intersection is a five leg intersection with heavy volumes of traffic on three approaches from southbound Madison Avenue and northbound KY 16 and northbound KY 17 (Madison Avenue). While the intersection is estimated to operate at LOS D based on the capacity analysis, observations in the AM peak indicate that extensive queues and delay may be experienced due to imbalanced lane usage caused by the short length of the second through lanes provided on the KY 16 and KY 17.

Intersection		AM Peak	PM Peak				
Intersection	LOS	Delay (s)	LOS	Delay (s)			
Madison Avenue at 19th Street	A	9.6	С	24.9			
<i>Madison Avenue at 20th Street</i>	A	6.6	A	9.2			
Madison Avenue at Wallace Avenue	A	8	В	20			
Madison Avenue at Sterrett Avenue (Eastbound Left Turn) ¹	В	14.2	D	25.2			
Madison Avenue at Levassor Avenue (Westbound Left Turn) ¹	F	57.2	D	32.5			
Madison Avenue at KY 16/17 Split (26th Street)	D	54.1	С	34.1			

Table 1: Existing Conditions LOS Analysis

1: Denotes Unsignalized intersection analysis by controlled approach

Transit Service

TANK provides transit service on Madison Avenue with 3 different routes including the 7, 8 and 33 Routes, as well as a Holmes Special, which provides direct drop off internal to the high school. These routes operate on 30-60 minute headways during the AM and PM peak periods with approximately 6 buses in each direction during a typical peak hour. Bus count data collected between September 2006 and June 2007 was provided by TANK. Based on this data, approximately 8 people get on / off each bus that travels along Madison Avenue between 12th Street and 26th Street.

Nine (9) stops are located between 26th Street and 19th Street. A timepoint, where buses may stop to ensure they are not ahead of schedule, is scheduled on the southern part of the corridor at 26th Street and at 20th Street. The stop at 20th Street is observed to be used by more buses each weekday than any other stop based on TANK count data. Residents and adjacent business owners have identified buses as a source of delay on the corridor resulting from stoppages while loading and unloading passengers. Discussion with TANK personnel indicate that this delay may be the result of the timepoint on the corridor where the bus may wait for longer periods of time.

At the request of the Madison Avenue Form District Steering Committee TANK conducted a preliminary analysis of the nine stops on the corridor. Based on this analysis 3 stops in the study area have been identified for removal and consolidation with other stops. **Figure 4** shows those identified as potential for removal and consolidation.

Parking

This section of the corridor serves a mixed use of adjacent land uses including commercial/retail and single family residential homes. Commercial activities are primarily located to the south and provide adequate off-street parking to serve business activities. Residential properties to the north typically have little to no driveways and rely upon on-street parking on Madison Avenue. Under the current configuration approximately 1,800 linear feet of parking is present on both sides of the street providing approximately 90 parking spaces.

Pedestrian Activity

As noted above the steering committee identified pedestrian movements in the vicinity of Holmes High School as a primary concern on the corridor. Field visits and pedestrian counts were conducted to document the extent of pedestrian activity in the area. During a typical weekday in September, 72 pedestrians were observed to cross Madison Avenue at unmarked crossings between 25th Street and 26th Street during a 30 minute period from 3:00 to 3:30 p.m. The pedestrian count did not include the high number of pedestrians crossing at the signalized crosswalk at 26th Street. This represents a high level of pedestrian activity and site observations indicated that the pedestrians often mix with high speed vehicular traffic that presents a potentially unsafe condition. The majority of pedestrian movements were observed to originate at the main Holmes High School entrance on Madison Avenue.

In addition to pedestrian safety issues noted above, other safety concerns were noted on the corridor by the steering committee. The main concern identified was at the horizontal curve on Madison Avenue north of 25th Street. This curve was noted as potentially hazardous due to the narrow lanes widths (10 foot), in conjunction with the presence of heavy vehicles including buses and commercial trucks. Utility poles on the corridor exacerbate this hazard, especially when located with little to no offset to the traffic lanes. The utility pole on the inside of the curve has evidence of possible vehicular strikes.

Future Conditions

The plan to redirect KY 16/17 traffic from the Wallace Woods Neighborhood, will significantly affect traffic volumes north of Wallace Avenue to 20th Street. To accurately asses these conditions, traffic volumes entering and exiting the major access points of the Wallace Woods Neighborhood were collected at Wallace Avenue and Sterrett Avenue.

Current studies by the Wallace Woods Neighborhood Association to implement traffic calming measures within the neighborhood have the potential to redirect this cut-through traffic from Eastern Avenue back onto Madison Avenue further impacting future operations. Therefore, traffic volumes were collected on Eastern Avenue at James Avenue (KY 16), and Levassor Avenue to determine the amount of traffic traveling through the Wallace Woods Neighborhood via Eastern Avenue.

The traffic volumes collected and summarized in Figure 3, were then redistributed onto the network to reflect the anticipated conditions as a result of the changes identified above. The redistribution relocated traffic from Sterrett and Wallace Avenues onto 20th Street and reduced the amount of northbound and southbound traffic on Eastern Avenue coming to/from south of KY 16. The redistributed traffic volumes are shown in **Figure 5**.

Alternatives

Several cross-section alternatives have been developed to serve the mobility needs of vehicles and pedestrians on the Madison Avenue corridor, as well as provide an infrastructure that supports the goals of the form district overlay. As the primary north-south roadway into the city, Madison Avenue serves as a major activity center for businesses and residents. The Madison Avenue form district overlay will encourage further activity through mixed uses and open building form. As a result, many competing interests are present on the corridor. This includes, vehicular, bicycle, pedestrian and parking activities. All of these factors must be properly balanced to provide a successful corridor for travel, work and life.

All alternatives proposed were developed to make use of the existing pavement width of 40 feet on Madison Avenue. Widening was not considered due to the density of development on the corridor, and the prohibitive cost of providing significant roadway widening. Each of these alternatives achieves a different balance between vehicular operations, pedestrian activities and on-street parking. A discussion of each alternative is presented below and a comparison of each alternative to the various needs is presented in Table 3 at the end of this section.

Detailed capacity analysis of each alternative is briefly presented in the following sections, but a full comparison of capacity analysis is provided in **Appendix B**.

Alternative 1: 4-lane

Alternative 1 maintains the existing 4-lane cross-section of Madison Avenue. As under the current conditions, time restricted parking would be maintained in the outer lane of traffic in each direction. Parking restrictions should however be revised to include the restriction of parking on the northbound direction (east side) of Madison Avenue during the AM peak period between the hours of 7 a.m. and 9 a.m. Based on the capacity analysis this period represents the highest level of congestion at the intersection of Madison Avenue at 26th Street (KY 16/17 Split) and requires two northbound lanes. It is recommended that the time restriction be carried to 20th Street where KY 17 is rerouted to Scott and Greenup Streets. Terminating the second lane by permitting parking before 20th Street may result in traffic entering onto Sterrett or Wallace Avenues to access KY 17.

In addition to the parking restrictions, minor modifications to the existing configuration are proposed to improve operations on Madison Avenue. Most significantly is the elimination of the northbound right turn lane at Sterrett Avenue. This turn lane was initially provided to accommodate turning traffic onto the previous KY 17 route. The rerouting of KY 17 to 20th Street negates the need for this turn lane. In its current configuration, the turn lane encourages traffic to utilize the Sterrett Avenue as the preferred route to Greenup and Scott Streets

Madison Avenue Corridor Study

City of Covington

for KY 17 traffic. Removing this turn lane and providing one for the northbound approach at 20th Street would direct KY 17 traffic along its intended route. Providing a right turn lane at 20th Street would also provide the opportunity to drop the second northbound lane to match the 3-lane section at 19th Street. This would allow for a correction of the offset geometry at the intersection of Madison Avenue and 19th Street.

Figure 6: Alternative 1 Cross-Section

Alternative 2: 2 + 1 Lanes

Alternative 2 would implement the alternative proposed by the Madison Avenue corridor redevelopment plan. Under this alternative permanent parking would be provided on the east side of Madison Avenue only. One travel lane would be provided in each direction on Madison Avenue. A center median lane would be provided that could be used as an exclusive left turn lane at intersections, a continuous two-way left turn lane or a pedestrian refuge at select locations.

Vehicular operations on Madison Avenue are expected to operate with acceptable levels of service on the corridor. However, delay would be expected to be higher than that experienced by Alternative 1. The primary increase in delay would be due to increased congestion during the AM peak period at the KY 16/17 split at 26th Street. In order to provide a 3-lane section with one lane northbound on Madison Avenue, it would be necessary to reduce the number of northbound lanes on KY 16 and KY 17 at this intersection. Due to the high concentration of directional traffic entering the city during the AM peak, increased delays and congestion is expected to result. However, during off-peak and PM peak periods, the intersection is shown to operate with acceptable levels of

delay. The remaining intersections on the corridor are expected to operate with minimal delay due to the lower volume of traffic on the side streets. The permanent reduction in the number of lanes would decrease vehicular speeds on the corridor.

Providing parking on the east side would provide on-street parking in front of residences that do not have adequate off-street parking. On the southern end of the study area, the west side of Madison Avenue is primarily occupied with commercial uses with off-street parking facilities. Residences on the west side of Madison Avenue north of 24th Street have off-street parking opportunities in the form of detached garages on Donaldson Avenue; however, it is noted that many of these garages are currently rented out and not used by residents. Permanent parking would be removed south of 20th Street to allow for an exclusive right turn lane onto 20th Street accommodating traffic following KY 17. Additionally, the existing right turn lane at Sterrett Avenue would be removed. As a result of this plan on-street parking would be reduced to 68 spaces on the east side of Madison Avenue, compared to the existing 90 spaces. However, this parking would be permanent and would not have time restrictions as would be necessary under Alternative 1.

The permanent reduction of the number of lanes may also increase the likelihood that TANK buses unloading and offloading passengers may block traffic for a short period of time. Permanent bus pullouts would be provided by removing parking where higher delays may be expected; such as at scheduled time points on the route.

By providing a permanent parking area on the eastside of Madison Avenue it will also be possible to provide curb extensions at pedestrian activity areas. Curb extensions can be used to 1) increase the visibility of pedestrians crossing the street and 2) reduce the amount of pavement width that a pedestrian must cross. In addition, the presence of the center median lane provides the opportunity to provide a refuge to further serve pedestrians.

Alternative 3: 3 Lane

Alternative 3 aims to reduce the delay at the KY 16/17 split associated with Alternative 2. In order to relieve this point of congestion 2 through lanes would be provided in the northbound direction. This will allow for 2 northbound lanes on KY 16 and KY 17 at the intersection. The 2 northbound lanes would be carried throughout the study area to 19th Street. Terminating the second northbound lane prior to the rerouting of KY 17 has the potential to direct a large portion of traffic into the adjacent neighborhood streets. A single lane would be provided in the southbound direction and permanent on-street parking would be provided on the east side of Madison Avenue.

Vehicular operations on Madison Avenue are expected to operate with acceptable levels of service on the corridor. This configuration can provide delays equal to Alternative 1 at the KY 16/KY 17 at 26th Street. The permanent reduction in the number of lanes for the southbound direction would decrease vehicular speeds, with possible interference with left turning vehicles due to the absence of a left turn lane.

Providing this configuration can provide delays equal to Alternative 1 at this key intersection. The two northbound lanes would be carried throughout the study area to 19th Street. Terminating the second northbound lane prior to the rerouting of KY 17 has the potential to direct a large portion of traffic into the adjacent neighborhood streets. Dropping the third lane at 19th Street would also

Madison Avenue Corridor Study	City of Covington
Page 14	NKAPC

provide the opportunity to drop the second northbound lane in order to match the 3-lane section at 19th Street.

Permanent parking would be provided on the east side of Madison Avenue. This provides on-street parking in front of residences that do not have adequate offstreet parking. On the southern end of the study area, the west side of Madison Avenue is primarily occupied with commercial uses with off-street parking facilities. Residences on the west side of Madison Avenue north of 24th Street have off-street parking opportunities in the form of detached garages on Donaldson Avenue; however, it is noted that many of these garages are currently rented out and not used by residents. Permanent parking would be removed south of 20th Street to allow for an exclusive right turn lane onto 20th Street accommodating traffic following KY 17. Additionally the existing right turn lane at Sterrett Avenue would be removed. As a result of this plan on-street parking would be reduced to 68 spaces on the east side of Madison Avenue, compared to the existing 90 spaces. However, this parking would be permanent and would not have time restrictions as would be necessary under Alternative 1.

The permanent reduction of the number of lanes in the southbound direction may also increase the likelihood that TANK buses unloading and offloading passengers may block traffic for a short period of time. Permanent bus pullouts may be provided by removing parking where higher delays may be expected; such as at scheduled time points on the route.

By providing a permanent parking area on the eastside of Madison Avenue it will also be possible to provide curb extensions at pedestrian activity areas. Curb extensions can be used to 1) increase the visibility of pedestrians crossing the street and 2) reduce the amount of pavement width that a pedestrian must cross.

Holmes High School Pedestrian Crossing Alternatives

As noted above one of the primary concerns raised by the Zoning Overlay Steering Committee and the project team, was the high number of pedestrian crossings in front of Holmes High School. During a 30 minute period over 70 mid-block pedestrian crossings were observed. The high speed differential between lanes on Madison Avenue, where one vehicle may be slowed or stopped, while the other is free-flowing, complicated these crossings. Several alternatives may be used to reduce speeds through the area and increase pedestrian safety. Potential alternatives are listed below.

- Upgrade Existing School Zone Signing with active Flashers.
- Provide a delineated mid-block crossing at the Holmes High School Entrance on Madison Avenue.
- Remove the existing signal at Madison Avenue and 25th Street and install a pedestrian actuated signal at the mid-block crossing.
- Reduce the number of through lanes on Madison Avenue in order to provide an improved and wider median refuge island.

The preferred alternative for this location would be a combination of all of the above identified options.

Public Involvement

Due to the myriad of trade-offs and impacts associated with each of the proposed alternatives that may affect the lives of those who live and work on the Madison Avenue Corridor, public input was sought to evaluate the alternatives. Public input was gathered through the public meeting and online visual preference survey conducted for the form district overlay. Each of the alternatives were first presented with advantages and disadvantages of each alternative discussed. Participants were then asked to rate each of the alternatives on a scale of 1 to 7 in terms of the alternatives appropriateness for the Madison Avenue Corridor. For the purposes of the survey a rating of 1 was described as very undesirable, 4 neutral and 7 being very desirable. This survey allows for the understanding of how the participants view the alternatives, as well as how they prioritize the many issues on the corridor. **Figure 9** below summarizes the number of responses for each alternative.

Figure 9: Public Rating by Alternative

As can be seen from the figure, Alternative 2 had the highest "desirable" ratings with over 57 percent of respondents identifying the alternative as desirable with a rating of five (5) or greater. While this alternative had the second highest "very undesirable" rating it had the lowest overall undesirable score with only 32 percent of respondents identifying the alternative as undesirable. Alternative 2 also had the highest average score of 4.3, compared to 3.8 for Alternative 3 and 3.5 for Alternative 1. **Table 2** summarizes the desirable, undesirable and neutral responses for all three alternatives.

Madison Avenue Corridor Study	City of Covington
Page 17	NKAPC

Rating	Alternative 1	Alternative 3	
Undesirable	44.7%	32.7%	39.4%
Neutral	19.0%	9.3%	19.9%
Desirable	33.6%	57.1%	37.2%

Table 2: Public Involvement Response Summary

In addition to the alternatives described above a two-lane alternative with one lane in each direction and permanent parking on one side was also evaluated; however as this alternative was shown to achieve minimal levels of mobility it was dropped from consideration. This alternative was also the poorest rated alternative by the public with an average rating of 2.85 with over 65 percent rating this alternative as undesirable.

Examining the alternatives and the ratings provided through the public involvement process, it is possible to begin understanding the prioritization of the public. Reducing the number of travel lanes in order to better accommodate pedestrians forsaking some vehicular mobility appears to be a reasonable tradeoff that the public may make. However, the poor ratings of the two-lane analysis indicate that vehicular access must be maintained at minimum level. Furthermore there appears to be a preference for those alternatives that provide less but permanent parking as opposed to parking restricted by time of day.

Table 3 summarizes the evaluation of each alternative against the many competing interests on the corridor.

Evaluation Criteria	Alternative 1	Alternative 2	Alternative 3		
Average Speed <i>AM Peak</i> <i>(PM Peak)</i>	18 mph (18 mph)	9 mph (15 mph)	18 mph (18 mph)		
KY 16/17 Intersection Level of Service / Delay <i>AM Peak</i> (<i>PM Peak</i>)	D / 45.9 (D / 35.7)	F / >80 (D / 52.0	D / 42.0 (C / 34.2)		
Lane Width	10 ft	11 ft	11 ft		
Safety Performance	Crash performance is anticipated to be similar to existing conditions	Crashes with parked cars may be reduced due to the removal of parking. Sideswipe crashes may also decrease due to the reduced # of lanes, improved speed consistency and increased lane width. Rear end crashes may increase at the KY 16/17 split due to increased congestion levels.	Crashes with parked cars are expected to be reduced due to the removal of intermittent parking. Sideswipe crashes may be reduced due to the wider lane width.		
Pedestrian Accommodation	Pedestrian accommodation will be similar to existing conditions	Total crossing distance will be reduced from 40 ft to 32 feet with the potential for a median refuge at specific location in the center median lane. Bulb outs or curb extensions may also be used to increase visibility of pedestrian at major intersections.	Total crossing distance will be reduced from 40 ft to 32 feet. Bulb outs or curb extensions may also be used to increase visibility of pedestrian at major intersections.		
Holmes High School Crossing	Would accommodate mid-block crossing and maintain existing narrow median. Will not reduce crossing width.	Would accommodate mid-block crossing and will reduce crossing width and provide improved median refuge.	Would accommodate mid-block crossing and provide a marginally wider median. Will not reduce crossing width.		
Parking (Estimated Number of On-Street Spaces)	90 spaces	68 spaces	68 spaces		
Public Involvement (Average Public Score; Scale of 1 to 7)	3.50	4.35	3.87		

Table 3: Alternative Evaluation

Recommendation

Based upon the analysis presented above, Alternative 3 is recommended for implementation on the Madison Avenue Corridor. This alternative strikes a balance between pedestrian and vehicular mobility and provides a proper transition between the southern section of the corridor and the proposed 3-lane section north of 19th Street. This alternative is also highly rated by the public as gathered through the public involvement survey.

A plan view of the entire study area for the recommended alternative is provided in **Appendix C**.

Appendix A Peak Hour Traffic Counts

File Name : Madison @ KY 16 KY 17 AM Site Code : 12180720 Start Date : 12/18/2007 Page No : 3

13

12.5

.464

104

.722

	Madison Ave From North							East 26th St From Fast					KY 16 / 1 From Sou	17 ith							
Start Time	Right	Thru to KY 16	Left	Thur to KY 17	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru from KY	Left	Thur from KY	App. Total	Right to KY 17	Thru	Left	To KY 16	App. Total	Int. Total
Peak Hour Analys	is From 0	7:00 AM to	08:15 Å	M - Peał	(1 of 1		I	I						1 10					·		
Peak Hour for Ent	ire Interse	ction Begi	ns at 07:0	00 AM																	
07:00 AM	3	28	0	29	60	2	0	22	0	24	0	165	11	115	291	9	2	3	2	16	391
07:15 AM	3	30	0	34	67	2	0	21	0	23	0	167	12	115	294	10	4	4	2	20	404
07:30 AM	2	47	0	49	98	2	8	21	0	31	0	137	11	213	361	8	0	17	7	32	522
07:45 AM	4	36	0	49	89	2	7	13	0	22	0	147	14	223	384	10	0	24	2	36	531
Total Volume	12	141	0	161	314	8	15	77	0	100	0	616	48	666	1330	37	6	48	13	104	1848
% App. Total	3.8	44.9	0	51.3		8	15	77	0		0	46.3	3.6	50.1		35.6	5.8	46.2	12.5		
PHF	.750	.750	.000	.821	.801	1.000	.469	.875	.000	.806	.000	.922	.857	.747	.866	.925	.375	.500	.464	.722	.870
Peak Hour Analys Peak Hour for Eac	is From 0 ⁻ ch Approa	7:00 AM to ch Begins	08:15 Al at:	M - Peał	x 1 of 1																
	07:30 AI	M				07:00 AN	1				07:00 A	М				07:00 AM]
+0 mins.	2	47	0	49	98	2	0	22	0	24	0	165	11	115	291	9	2	3	2	16	
+15 mins.	4	36	0	49	89	2	0	21	0	23	0	167	12	115	294	10	4	4	2	20	
+30 mins.	2	35	0	43	80	2	8	21	0	31	0	137	11	213	361	8	0	17	7	32	
+45 mins.	1	36	0	44	81	2	7	13	0	22	0	147	14	223	384	10	0	24	2	36	

100

.806

0

0

.000

616

46.3

.922

48

3.6

.857

666

50.1

.747

1330

.866

37

35.6

.925

6

5.8

.375

48

46.2

.500

15

15

.469

77

77

.875

0

0

.000

8

8

1.000

Total Volume

% App. Total

PHF

9

2.6

.563

154

44.3

.819

185

53.2

.944

0

0

.000

348

.888.

File Name : Madison Ave @ Leavassor Ave AM Site Code : 12180731 Start Date : 12/18/2007 Page No : 3

		Madiso	on Ave			Leaves	sor Ave		Madison Ave											
		From	North			From	i East		From South											
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds	App. Total	Int. Total							
Peak Hour Analysis	s From 07:00	AM to 0	8:30 AM	- Peak 1 of 1	-				-											
Peak Hour for Entir	e Intersectio	n Begins	at 07:15	AM																
07:15 AM	77	1	0	78	1	1	0	2	0	375	0	0	0	0	0	0	0	0	375	455
07:30 AM	115	0	0	115	0	0	0	0	0	466	0	0	0	0	0	0	0	0	466	581
07:45 AM	105	1	0	106	4	3	0	7	0	492	0	0	0	0	0	0	0	0	492	605
08:00 AM	94	2	0	96	3	3	0	6	0	351	0	0	0	0	0	0	0	0	351	453
Total Volume	391	4	0	395	8	7	0	15	0	1684	0	0	0	0	0	0	0	0	1684	2094
% App. Total	99	1	0		53.3	46.7	0		0	100	0	0	0	0	0	0	0	0		
PHF	.850	.500	.000	.859	.500	.583	.000	.536	.000	.856	.000	.000	.000	.000	.000	.000	.000	.000	.856	.865
Peak Hour Analysis	s From 07:00	AM to 0	8:30 AM	- Peak 1 of 1																
Peak Hour for Each	n Approach E	Begins at	:																	
	07:30 AM	-		(07:45 AM				07:00 AM											
+0 mins.	115	0	0	115	4	3	0	7	0	372	0	0	0	0	0	0	0	0	372	
+15 mins.	105	1	0	106	3	3	0	6	0	375	0	0	0	0	0	0	0	0	375	
+30 mins.	94	2	0	96	3	1	0	4	0	466	0	0	0	0	0	0	0	0	466	
+45 mins.	95	1	0	96	1	4	0	5	0	492	0	0	0	0	0	0	0	0	492	
Total Volume	409	4	0	413	11	11	0	22	0	1705	0	0	0	0	0	0	0	0	1705	
% App. Total	99	1	0		50	50	0		0	100	0	0	0	0	0	0	0	0		
PHF	.889	.500	.000	.898	.688	.688	.000	.786	.000	.866	.000	.000	.000	.000	.000	.000	.000	.000	.866	

File Name : Madison @ Sterrett Ave AM Site Code : 12180740 Start Date : 12/18/2007 Page No : 1

								Grou	ips Printe	ed- Unshifte	d - Bank 1	- Bank 2									
		M	adison A	ve			S	terrett Av	/e.			N	ladison A	ve			S	terrett Av	'e.		
		F	rom Nor	th			ŀ	From Eas	st			F	rom Sou	th			F	From Wes	st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	1	58	1	0	60	0	0	0	0	0	133	236	0	0	369	1	0	1	0	2	431
07:15 AM	1	63	1	0	65	0	0	0	0	0	144	153	1	0	298	2	0	1	0	3	366
07:30 AM	1	90	0	0	91	0	0	0	0	0	143	157	0	0	300	2	0	0	0	2	393
07:45 AM	0	84	1	0	85	0	0	0	0	0	151	149	1	0	301	0	0	0	0	0	386
Total	3	295	3	0	301	0	0	0	0	0	571	695	2	0	1268	5	0	2	0	7	1576
08:00 AM	2	74	0	0	76	0	0	0	0	0	136	132	0	0	268	3	0	1	0	4	348
08:15 AM	1	78	2	0	81	0	0	0	0	0	128	123	1	0	252	0	0	0	0	0	333
08:30 AM	0	92	1	0	93	0	0	0	0	0	126	135	0	0	261	1	0	0	0	1	355
08:45 AM	1	79	3	0	83	0	0	0	0	0	119	124	1	0	244	2	0	1	0	3	330
Total	4	323	6	0	333	0	0	0	0	0	509	514	2	0	1025	6	0	2	0	8	1366
					'																
Grand Total	7	618	9	0	634	0	0	0	0	0	1080	1209	4	0	2293	11	0	4	0	15	2942
Apprch %	1.1	97.5	1.4	0		0	0	0	0		47.1	52.7	0.2	0		73.3	0	26.7	0		
Total %	0.2	21	0.3	0	21.5	0	0	0	0	0	36.7	41.1	0.1	0	77.9	0.4	0	0.1	0	0.5	
Unshifted	7	618	9	0	634	0	0	0	0	0	1080	1209	4	0	2293	11	0	4	0	15	5884
% Unshifted	100	100	100	0	100	0	0	0	0	0	100	100	100	0	100	100	0	100	0	100	100
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bank 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bank 2	0	0	0	0	0	Ō	0	0	0	Ō	0	0	0	0	0	0	0	0	0	0	0

File Name : Madison @ Wallace AM Site Code : 12180750 Start Date : 12/18/2007 Page No : 3

		Madiso	on Ave			Wallac	ce Ave.						N	ladison Av	/e					
		From	North			From	n East						F	From Sout	h					
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds	Peds	Peds	Peds	Peds	Peds	Peds	Peds	App. Total	Int. Total
Peak Hour Analysis	s From 07:1	5 AM to 0	8:45 AM	- Peak 1 of	1				-											
Peak Hour for Entir	e Intersectio	on Begins	at 08:00	AM (
08:00 AM	90	Ō	0	90	4	46	0	50	0	180	0	0	0	0	0	0	0	0	180	320
08:15 AM	96	0	0	96	5	51	0	56	0	191	0	0	0	0	0	0	0	0	191	343
08:30 AM	94	0	0	94	6	48	0	54	0	189	0	0	0	0	0	0	0	0	189	337
08:45 AM	84	0	0	84	5	46	0	51	0	190	0	0	0	0	0	0	0	0	190	325
Total Volume	364	0	0	364	20	191	0	211	0	750	0	0	0	0	0	0	0	0	750	1325
% App. Total	100	0	0		9.5	90.5	0		0	100	0	0	0	0	0	0	0	0		
PHF	.948	.000	.000	.948	.833	.936	.000	.942	.000	.982	.000	.000	.000	.000	.000	.000	.000	.000	.982	.966
Peak Hour Analysis	s From 07:1	5 AM to 0	8:45 AM	- Peak 1 of	1															
Peak Hour for Each	Approach	Begins at	:																	
	07:45 AM	-			08:00 AM				08:00 AM											
+0 mins.	96	0	0	96	4	46	0	50	0	180	0	0	0	0	0	0	0	0	180	
+15 mins.	90	0	0	90	5	51	0	56	0	191	0	0	0	0	0	0	0	0	191	
+30 mins.	96	0	0	96	6	48	0	54	0	189	0	0	0	0	0	0	0	0	189	
+45 mins.	94	0	0	94	5	46	0	51	0	190	0	0	0	0	0	0	0	0	190	
Total Volume	376	0	0	376	20	191	0	211	0	750	0	0	0	0	0	0	0	0	750	
% App. Total	100	0	0		9.5	90.5	0		0	100	0	0	0	0	0	0	0	0		
PHF	979	000	000	979	833	936	000	942	000	982	000	000	000	000	000	000	000	000	982	

File Name : Madison @ 19th St AM Site Code : 12180770 Start Date : 12/18/2007 Page No : 1

									Gro	ups Printed-	Unshifted										
		Ma	dison Av	e.			E	ast 19th S	St.	,		М	adison Av	'e			W	est 19th S	St.		
		F	<u>rom Nortl</u>	h				From East	t			F	rom Sout	<u>h</u>			F	From Wes	t		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	17	23	3	0	43	0	0	0	0	0	1	107	50	0	158	19	0	21	0	40	241
07:15 AM	26	25	0	0	51	1	0	1	0	2	0	106	50	0	156	23	0	28	0	51	260
07:30 AM	28	28	1	0	57	0	0	0	0	0	0	116	47	0	163	25	0	31	0	56	276
07:45 AM	33	30	1	0	64	0	1	0	0	1	0	119	45	0	164	32	0	37	0	69	298
Total	104	106	5	0	215	1	1	1	0	3	1	448	192	0	641	99	0	117	0	216	1075
08:00 AM	38	33	0	0	71	1	1	0	0	2	0	113	43	0	156	35	0	42	0	77	306
08:15 AM	41	36	2	0	79	0	0	0	0	0	0	116	46	0	162	36	0	38	0	74	315
08:30 AM	36	40	0	0	76	1	0	1	0	2	0	111	57	0	168	34	0	36	0	70	316
08:45 AM	33	38	1	0	72	0	0	0	0	0	0	119	46	0	165	41	0	44	0	85	322
Total	148	147	3	0	298	2	1	1	0	4	0	459	192	0	651	146	0	160	0	306	1259
Grand Total	252	253	8	0	513	3	2	2	0	7	1	907	384	0	1292	245	0	277	0	522	2334
Apprch %	49.1	49.3	1.6	0		42.9	28.6	28.6	0		0.1	70.2	29.7	0		46.9	0	53.1	0		
Total %	10.8	10.8	0.3	0	22	0.1	0.1	0.1	0	0.3	0	38.9	16.5	0	55.4	10.5	0	11.9	0	22.4	

File Name : Madison @ 20th St AM Site Code : 12180720 Start Date : 12/18/2007 Page No : 3

		M	adison Av rom North	/e h			E	ast 20th From East	St st			N	1adison A From Sou	ve th			V F	/est 20th From Wes	St st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys	is From 07:	:15 AM to	08:45 AN	I - Peak	(1 of 1		I														
Peak Hour for Ent	ire Intersec	tion Begi	ns at 07:3	MA 0																	
07:30 AM	3	55	11	0	69	15	4	10	0	29	8	154	1	0	163	1	3	4	0	8	269
07:45 AM	3	58	13	0	74	16	4	13	0	33	10	168	2	0	180	2	2	4	0	8	295
08:00 AM	4	63	11	0	78	16	5	16	0	37	10	170	1	0	181	3	4	6	0	13	309
08:15 AM	3	68	12	0	83	17	4	15	0	36	11	169	1	0	181	3	3	8	0	14	314
Total Volume	13	244	47	0	304	64	17	54	0	135	39	661	5	0	705	9	12	22	0	43	1187
% App. Total	4.3	80.3	15.5	0		47.4	12.6	40	0		5.5	93.8	0.7	0		20.9	27.9	51.2	0		
PHF	.813	.897	.904	.000	.916	.941	.850	.844	.000	.912	.886	.972	.625	.000	.974	.750	.750	.688	.000	.768	.945
Peak Hour Analys Peak Hour for Eac	is From 07: h Approac	:15 AM to h Begins	08:45 AM at:	∕I - Peak	c 1 of 1	07:30 AN	1				07:30 A	Λ				08:00 AM	1				
+0 mins.	3	58	13	0	74	15	. 4	10	0	29	8	154	1	0	163	3	. 4	6	0	13	1
15 mino	1	60	11	ő	70	16		10	õ		10	169		ő	100	2		ŏ	Ő	14	1

+0 mms.	5	50	10	0	74	15	4	10	0	29	0	104		0	105	5	4	0	0	10
+15 mins.	4	63	11	0	78	16	4	13	0	33	10	168	2	0	180	3	3	8	0	14
+30 mins.	3	68	12	0	83	16	5	16	0	37	10	170	1	0	181	2	1	3	0	6
+45 mins.	5	51	14	0	70	17	4	15	0	36	11	169	1	0	181	3	5	5	0	13
Total Volume	15	240	50	0	305	64	17	54	0	135	39	661	5	0	705	11	13	22	0	46
% App. Total	4.9	78.7	16.4	0		47.4	12.6	40	0		5.5	93.8	0.7	0		23.9	28.3	47.8	0	
PHF	.750	.882	.893	.000	.919	.941	.850	.844	.000	.912	.886	.972	.625	.000	.974	.917	.650	.688	.000	.821

File Name : StJames @ Eastern AM Site Code : 12180710 Start Date : 12/18/2007 Page No : 3

		Jame	s Ave			Easter	n Ave.							James Ave	Э					
		From	North			From	East						F	From Sout	<u>h</u>					
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds	Peds	Peds	Peds	Peds	Peds	Peds	Peds	App. Total	Int. Total
Peak Hour Analysis	s From 07:15	5 AM to 0	9:00 AM	- Peak 1 of	1															
Peak Hour for Entir	e Intersectio	n Begins	at 07:30	AM																
07:30 AM	42	0	0	42	0	30	0	30	48	133	0	0	0	0	0	0	0	0	181	253
07:45 AM	52	0	0	52	2	37	0	39	73	132	0	0	0	0	0	0	0	0	205	296
08:00 AM	43	0	0	43	1	45	0	46	53	129	0	0	0	0	0	0	0	0	182	271
08:15 AM	57	2	0	59	1	14	0	15	21	128	0	0	0	0	0	0	0	0	149	223
Total Volume	194	2	0	196	4	126	0	130	195	522	0	0	0	0	0	0	0	0	717	1043
% App. Total	99	1	0		3.1	96.9	0		27.2	72.8	0	0	0	0	0	0	0	0		
PHF	.851	.250	.000	.831	.500	.700	.000	.707	.668	.981	.000	.000	.000	.000	.000	.000	.000	.000	.874	.881
Peak Hour Analysis	s From 07:15	5 AM to 0	9:00 AM	- Peak 1 of	1															
Peak Hour for Each	h Approach E	Begins at	:																	
	07:30 AM	-			07:15 AM				07:30 AM											
+0 mins.	42	0	0	42	1	21	0	22	48	133	0	0	0	0	0	0	0	0	181	
+15 mins.	52	0	0	52	0	30	0	30	73	132	0	0	0	0	0	0	0	0	205	
+30 mins.	43	0	0	43	2	37	0	39	53	129	0	0	0	0	0	0	0	0	182	
+45 mins.	57	2	0	59	1	45	0	46	21	128	0	0	0	0	0	0	0	0	149	
Total Volume	194	2	0	196	4	133	0	137	195	522	0	0	0	0	0	0	0	0	717	
% App. Total	99	1	0		2.9	97.1	0		27.2	72.8	0	0	0	0	0	0	0	0		
PHF	.851	.250	.000	.831	.500	.739	.000	.745	.668	.981	.000	.000	.000	.000	.000	.000	.000	.000	.874	

File Name : Eastern@LevassorAM Site Code : 01290801 Start Date : 1/29/2008 Page No : 3

		E: F	astern A rom Noi	ve rth			Le	avessor A From Eas	tve			E	Eastern Av From Sou	/e th			Le F	vassor A From We	ve st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys	is From 07	':00 AM to	08:30 A	M - Peak	1 of 1																
Peak Hour for Enti	re Interse	ction Begir	ns at 07:	:45 AM																	
07:45 AM	1	22	0	0	23	3	1	1	0	5	1	29	3	0	33	1	1	1	0	3	64
08:00 AM	1	26	1	0	28	3	0	1	0	4	0	33	3	0	36	0	0	0	0	0	68
08:15 AM	4	25	0	0	29	4	0	1	0	5	1	29	3	0	33	0	0	0	0	0	67
08:30 AM	2	29	0	0	31	1	0	3	0	4	0	25	1	0	26	1	0	1	0	2	63
Total Volume	8	102	1	0	111	11	1	6	0	18	2	116	10	0	128	2	1	2	0	5	262
% App. Total	7.2	91.9	0.9	0		61.1	5.6	33.3	0		1.6	90.6	7.8	0		40	20	40	0		
PHF	.500	.879	.250	.000	.895	.688	.250	.500	.000	.900	.500	.879	.833	.000	.889	.500	.250	.500	.000	.417	.963
Peak Hour Analys	is From 07	:00 AM to	08:30 A at:	M - Peak	1 of 1	·															1
	07:45 AN					07:45 AM					07:30 AM					07:00 AM					1

	07:45 AM					07:45 AM					07:30 AM					07:00 AM				
+0 mins.	1	22	0	0	23	3	1	1	0	5	0	25	1	0	26	1	0	1	0	2
+15 mins.	1	26	1	0	28	3	0	1	0	4	1	29	3	0	33	0	0	0	0	0
+30 mins.	4	25	0	0	29	4	0	1	0	5	0	33	3	0	36	0	0	1	0	1
+45 mins.	2	29	0	0	31	1	0	3	0	4	1	29	3	0	33	1	1	1	0	3
Total Volume	8	102	1	0	111	11	1	6	0	18	2	116	10	0	128	2	1	3	0	6
% App. Total	7.2	91.9	0.9	0		61.1	5.6	33.3	0		1.6	90.6	7.8	0		33.3	16.7	50	0	
PHF	.500	.879	.250	.000	.895	.688	.250	.500	.000	.900	.500	.879	.833	.000	.889	.500	.250	.750	.000	.500

File Name : Madison @ KY 16 KY 17 PM Site Code : 12180721 Start Date : 12/18/2007 Page No : 3

		M: F	adison Av From North	/e h				26th St From Eas	t			K	Y 16 / KY From Sou	17 th			F	26th St From Wes	st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysi	s From 04	1:00 PM to	05:00 PM	M - Peak	(1 of 1																
Peak Hour for Enti	re Interse	ction Begi	ns at 04:0	00 PM																	
04:00 PM	17	96	0	110	223	1	1	16	0	18	0	80	20	65	165	9	7	7	0	23	429
04:15 PM	5	116	0	125	246	0	1	8	0	9	0	88	11	47	146	6	4	4	0	14	415
04:30 PM	9	114	0	130	253	0	0	17	0	17	0	105	21	75	201	8	11	4	0	23	494
04:45 PM	3	98	0	124	225	0	0	15	0	15	0	83	13	75	171	6	6	4	0	16	427
Total Volume	34	424	0	489	947	1	2	56	0	59	0	356	65	262	683	29	28	19	0	76	1765
% App. Total	3.6	44.8	0	51.6		1.7	3.4	94.9	0		0	52.1	9.5	38.4		38.2	36.8	25	0		
PHF	.500	.914	.000	.940	.936	.250	.500	.824	.000	.819	.000	.848	.774	.873	.850	.806	.636	.679	.000	.826	.893
Peak Hour Analysi Peak Hour for Eac	s From 04 h Approad	1:00 PM to ch Begins	05:00 PM at:	VI - Peak	c 1 of 1																

	04:00 PM					04:00 PM					04:15 P	M				04:15 PM				
+0 mins.	17	96	0	110	223	1	1	16	0	18	0	88	11	47	146	6	4	4	0	14
+15 mins.	5	116	0	125	246	0	1	8	0	9	0	105	21	75	201	8	11	4	0	23
+30 mins.	9	114	0	130	253	0	0	17	0	17	0	83	13	75	171	6	6	4	0	16
+45 mins.	3	98	0	124	225	0	0	15	0	15	0	94	16	58	168	7	10	10	0	27
Total Volume	34	424	0	489	947	1	2	56	0	59	0	370	61	255	686	27	31	22	0	80
% App. Total	3.6	44.8	0	51.6		1.7	3.4	94.9	0		0	53.9	8.9	37.2		33.8	38.8	27.5	0	
PHF	.500	.914	.000	.940	.936	.250	.500	.824	.000	.819	.000	.881	.726	.850	.853	.844	.705	.550	.000	.741

File Name : Madison Ave @ Leavassor Ave PM Site Code : 12180731 Start Date : 12/18/2007 Page No : 3

		Madiso	on Ave			Leaves	sor Ave						N	ladison Av	/e					
		From	North			From	i East						F	From Sout	h					
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds	Peds	Peds	Peds	Peds	Peds	Peds	Peds	App. Total	Int. Total
Peak Hour Analysis	s From 07:00) AM to 0	8:30 AM	- Peak 1 of	1															
Peak Hour for Entire	e Intersectio	n Begins	at 07:15	AM																
07:15 AM	296	1	0	297	1	4	0	5	3	177	0	0	0	0	0	0	0	0	180	482
07:30 AM	299	1	0	300	0	3	0	3	1	239	0	0	0	0	0	0	0	0	240	543
07:45 AM	272	0	0	272	3	4	0	7	0	211	0	0	0	0	0	0	0	0	211	490
08:00 AM	262	0	0	262	4	3	0	7	0	200	0	0	0	0	0	0	0	0	200	469
Total Volume	1129	2	0	1131	8	14	0	22	4	827	0	0	0	0	0	0	0	0	831	1984
% App. Total	99.8	0.2	0		36.4	63.6	0		0.5	99.5	0	0	0	0	0	0	0	0		
PHF	.944	.500	.000	.943	.500	.875	.000	.786	.333	.865	.000	.000	.000	.000	.000	.000	.000	.000	.866	.913
Peak Hour Analysis	s From 07:00) AM to 0	8:30 AM	- Peak 1 of	1															
Peak Hour for Each	Approach E	Begins at	:																	
	07:15 AM				07:45 AM				07:30 AM											
+0 mins.	296	1	0	297	3	4	0	7	1	239	0	0	0	0	0	0	0	0	240	
+15 mins.	299	1	0	300	4	3	0	7	0	211	0	0	0	0	0	0	0	0	211	
+30 mins.	272	0	0	272	0	0	0	0	0	200	0	0	0	0	0	0	0	0	200	
+45 mins.	262	0	0	262	3	7	0	10	3	210	0	0	0	0	0	0	0	0	213	
Total Volume	1129	2	0	1131	10	14	0	24	4	860	0	0	0	0	0	0	0	0	864	
% App. Total	99.8	0.2	0		41.7	58.3	0		0.5	99.5	0	0	0	0	0	0	0	0		
PHF	.944	.500	.000	.943	.625	.500	.000	.600	.333	.900	.000	.000	.000	.000	.000	.000	.000	.000	.900	

File Name : Madison @ Sterrett Ave PM Site Code : 12180741 Start Date : 12/18/2007 Page No : 3

		N	ladison A	ve			S	terrett Av	/e.			N	ladison A	ve			5	Sterrett Av	e.		
		F	From Nor	th				From East	st			F	From Sou	th				From We	st		1
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys	is From 04	:00 PM to	o 05:45 P	M - Peak	c1 of 1																
Peak Hour for Enti	ire Interse	ction Begi	ins at 04:	15 PM																	
04:15 PM	1	243	6	0	250	0	0	0	0	0	35	113	3	0	151	2	0	0	0	2	403
04:30 PM	0	240	6	0	246	0	0	0	0	0	39	121	2	0	162	2	0	0	0	2	410
04:45 PM	1	241	4	0	246	0	0	0	0	0	41	124	0	0	165	0	0	0	0	0	411
05:00 PM	0	217	4	0	221	0	0	0	0	0	48	120	0	0	168	1	0	2	0	3	392
Total Volume	2	941	20	0	963	0	0	0	0	0	163	478	5	0	646	5	0	2	0	7	1616
% App. Total	0.2	97.7	2.1	0		0	0	0	0		25.2	74	0.8	0		71.4	0	28.6	0		1
PHF	.500	.968	.833	.000	.963	.000	.000	.000	.000	.000	.849	.964	.417	.000	.961	.625	.000	.250	.000	.583	.983
Peak Hour Analys	is From 04	:00 PM to	o 05:45 P	M - Peak	< 1 of 1																

Peak Hour for Fach Approach Begins at:

reak nour ior Lac	пдриоасі	Degins	aı.																	
	04:15 PM					04:00 PM					05:00 PM					04:00 PM				
+0 mins.	1	243	6	0	250	0	0	0	0	0	48	120	0	0	168	1	0	2	0	3
+15 mins.	0	240	6	0	246	0	0	0	0	0	52	117	0	0	169	2	0	0	0	2
+30 mins.	1	241	4	0	246	0	0	0	0	0	59	117	0	0	176	2	0	0	0	2
+45 mins.	0	217	4	0	221	0	0	0	0	0	47	121	0	0	168	0	0	0	0	0
Total Volume	2	941	20	0	963	0	0	0	0	0	206	475	0	0	681	5	0	2	0	7
% App. Total	0.2	97.7	2.1	0		0	0	0	0		30.2	69.8	0	0		71.4	0	28.6	0	
PHF	.500	.968	.833	.000	.963	.000	.000	.000	.000	.000	.873	.981	.000	.000	.967	.625	.000	.250	.000	.583
File Name : Madison @ Wallace PM Site Code : 12180751 Start Date : 12/18/2007 Page No : 3

		Madis	on Ave			Walla	ce Ave						N	ladison Av	/e					I
		From	North			From	n East						F	From Sout	h					
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds	Peds	Peds	Peds	Peds	Peds	Peds	Peds	App. Total	Int. Total
Peak Hour Analysis	s From 04:0	0 PM to 0	5:45 PM	- Peak 1 of	1				-											
Peak Hour for Entir	e Intersectio	on Begins	at 05:00	PM																
05:00 PM	140	0	0	140	3	119	0	122	0	132	0	0	0	0	0	0	0	0	132	394
05:15 PM	153	0	0	153	2	130	0	132	0	137	0	0	0	0	0	0	0	0	137	422
05:30 PM	167	0	0	167	1	127	0	128	0	155	0	0	0	0	0	0	0	0	155	450
05:45 PM	178	0	0	178	2	112	0	114	0	167	0	0	0	0	0	0	0	0	167	459
Total Volume	638	0	0	638	8	488	0	496	0	591	0	0	0	0	0	0	0	0	591	1725
% App. Total	100	0	0		1.6	98.4	0		0	100	0	0	0	0	0	0	0	0		I
PHF	.896	.000	.000	.896	.667	.938	.000	.939	.000	.885	.000	.000	.000	.000	.000	.000	.000	.000	.885	.940
Peak Hour Analysis	s From 04:00	0 PM to C)5:45 PM	- Peak 1 of	1															
Peak Hour for Each	Approach I	Begins at	:																	
	05:00 PM				04:00 PM				05:00 PM											I.
+0 mins.	140	0	0	140	2	127	0	129	0	132	0	0	0	0	0	0	0	0	132	I
+15 mins.	153	0	0	153	3	122	0	125	0	137	0	0	0	0	0	0	0	0	137	I.
+30 mins.	167	0	0	167	5	136	0	141	0	155	0	0	0	0	0	0	0	0	155	I.
+45 mins.	178	0	0	178	2	101	0	103	0	167	0	0	0	0	0	0	0	0	167	1
Total Volume	638	0	0	638	12	486	0	498	0	591	0	0	0	0	0	0	0	0	591	I.
% App. Total	100	0	0		2.4	97.6	0		0	100	0	0	0	0	0	0	0	0		1
PHF	896	.000	000	.896	600	.893	000	883	.000	885	000	000	000	000	000	000	000	000	885	1

File Name : Madison @ 19th St PM Site Code : 12180771 Start Date : 12/18/2007 Page No : 3

		М	adison A	ve				19th St.				Ν	ladison A	ve				19th St.			
		F	rom Nor	th				From Eas	t				From Sou	ith			F	From We	st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys	is From 04	4:00 PM to	05:45 P	M - Peak	1 of 1																
Peak Hour for Enti	re Interse	ction Begi	ns at 05:	00 PM																	
05:00 PM	60	109	0	0	169	6	6	0	0	12	4	113	39	0	156	66	6	43	0	115	452
05:15 PM	67	119	0	0	186	7	6	0	0	13	3	116	47	0	166	67	7	50	0	124	489
05:30 PM	49	123	0	0	172	7	5	0	0	12	5	116	48	0	169	71	7	52	0	130	483
05:45 PM	44	134	0	0	178	5	4	0	0	9	2	125	52	0	179	77	5	56	0	138	504
Total Volume	220	485	0	0	705	25	21	0	0	46	14	470	186	0	670	281	25	201	0	507	1928
% App. Total	31.2	68.8	0	0		54.3	45.7	0	0		2.1	70.1	27.8	0		55.4	4.9	39.6	0		
PHF	.821	.905	.000	.000	.948	.893	.875	.000	.000	.885	.700	.940	.894	.000	.936	.912	.893	.897	.000	.918	.956
Peak Hour Analysi	is From 04	4:00 PM to	05:45 P	M - Peak	: 1 of 1																
Peak Hour for Eac	h Approad	ch Begins	at:																		
	05:00 PN	Λ				04:45 PM					05:00 PN	1				05:00 PN	1				
.0 mino	00	100	0	0	100	C	2	0	0	0	4	440	20	0	150	00	0	40	0	445	

	05.00 PIVI					04.45 PIV	1				05.00 PI	VI				05.00 PIV				
+0 mins.	60	109	0	0	169	6	3	0	0	9	4	113	39	0	156	66	6	43	0	115
+15 mins.	67	119	0	0	186	6	6	0	0	12	3	116	47	0	166	67	7	50	0	124
+30 mins.	49	123	0	0	172	7	6	0	0	13	5	116	48	0	169	71	7	52	0	130
+45 mins.	44	134	0	0	178	7	5	0	0	12	2	125	52	0	179	77	5	56	0	138
Total Volume	220	485	0	0	705	26	20	0	0	46	14	470	186	0	670	281	25	201	0	507
% App. Total	31.2	68.8	0	0		56.5	43.5	0	0		2.1	70.1	27.8	0		55.4	4.9	39.6	0	
PHF	.821	.905	.000	.000	.948	.929	.833	.000	.000	.885	.700	.940	.894	.000	.936	.912	.893	.897	.000	.918

File Name : Madison @ 20th St PM Site Code : 12180761 Start Date : 12/18/2007 Page No : 3

		M	adsion A rom Nort	ve th				20th St. From Eas	st			N	ladsion A From Sou	ve th			F	20th St. rom We	st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysi	s From 04	:15 PM to	05:45 P	M - Peal	1 of 1																
Peak Hour for Enti	re Intersed	ction Begi	ns at 05:0	00 PM																	
05:00 PM	12	119	15	0	146	24	2	17	0	43	7	119	1	0	127	2	1	5	0	8	324
05:15 PM	13	132	17	0	162	26	3	19	0	48	8	121	1	0	130	2	2	6	0	10	350
05:30 PM	10	134	17	0	161	25	2	17	0	44	6	120	0	0	126	1	4	7	0	12	343
05:45 PM	11	140	19	0	170	26	1	23	0	50	9	131	2	0	142	2	3	4	0	9	371
Total Volume	46	525	68	0	639	101	8	76	0	185	30	491	4	0	525	7	10	22	0	39	1388
% App. Total	7.2	82.2	10.6	0		54.6	4.3	41.1	0		5.7	93.5	0.8	0		17.9	25.6	56.4	0		
PHF	.885	.938	.895	.000	.940	.971	.667	.826	.000	.925	.833	.937	.500	.000	.924	.875	.625	.786	.000	.813	.935
Peak Hour Analysi Peak Hour for Eac	s From 04 h Approac	:15 PM to h Begins	o 05:45 P at:	M - Peał	x 1 of 1																
	DE-00 DM	Λ -				05.00 DM	1					1				OFIOD DI	4				

	05:00 PM					05:00 PM					05:00 PI	M				05:00 PN	1			
+0 mins.	12	119	15	0	146	24	2	17	0	43	7	119	1	0	127	2	1	5	0	8
+15 mins.	13	132	17	0	162	26	3	19	0	48	8	121	1	0	130	2	2	6	0	10
+30 mins.	10	134	17	0	161	25	2	17	0	44	6	120	0	0	126	1	4	7	0	12
+45 mins.	11	140	19	0	170	26	1	23	0	50	9	131	2	0	142	2	3	4	0	9
Total Volume	46	525	68	0	639	101	8	76	0	185	30	491	4	0	525	7	10	22	0	39
% App. Total	7.2	82.2	10.6	0		54.6	4.3	41.1	0		5.7	93.5	0.8	0		17.9	25.6	56.4	0	
PHF	.885	.938	.895	.000	.940	.971	.667	.826	.000	.925	.833	.937	.500	.000	.924	.875	.625	.786	.000	.813

File Name : StJames @ Eastern PM Site Code : 12180711 Start Date : 12/18/2007 Page No : 3

		:	St James				E	astern Ave	e.				St James								
		F	rom North	า				From East	t			F	From Sout	า			F	rom West	t		
Start Time	Right	Thru	Left	Peds /	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis	From 04:00) PM to 0	5:30 PM -	Peak 1 of	1	-					-					-					
Peak Hour for Entire	e Intersectio	n Begins	at 04:00	PM																	
04:00 PM	0	140	2	0	142	1	0	52	0	53	31	89	0	0	120	0	0	0	0	0	315
04:15 PM	0	123	0	0	123	0	0	47	0	47	21	90	0	0	111	0	0	0	0	0	281
04:30 PM	0	154	1	0	155	1	0	76	0	77	24	92	0	0	116	0	0	0	0	0	348
04:45 PM	0	145	1	0	146	0	0	77	0	77	49	101	0	0	150	0	0	0	0	0	373
Total Volume	0	562	4	0	566	2	0	252	0	254	125	372	0	0	497	0	0	0	0	0	1317
% App. Total	0	99.3	0.7	0		0.8	0	99.2	0		25.2	74.8	0	0		0	0	0	0		
PHF	.000	.912	.500	.000	.913	.500	.000	.818	.000	.825	.638	.921	.000	.000	.828	.000	.000	.000	.000	.000	.883
Peak Hour Analysis	From 04:00) PM to 0	5:30 PM -	Peak 1 of	1																
Peak Hour for Each	Approach E	Begins at:																			
	04:00 PM					04:15 PM					04:30 PM					04:00 PM					
+0 mins.	0	140	2	0	142	0	0	47	0	47	24	92	0	0	116	0	0	0	0	0	
+15 mins.	0	123	0	0	123	1	0	76	0	77	49	101	0	0	150	0	0	0	0	0	
+30 mins.	0	154	1	0	155	0	0	77	0	77	28	90	0	0	118	0	0	0	0	0	
+45 mins.	0	145	1	0	146	0	0	55	0	55	27	109	0	0	136	0	0	0	0	0	
Total Volume	0	562	4	0	566	1	0	255	0	256	128	392	0	0	520	0	0	0	0	0	
% App. Total	0	99.3	0.7	0		0.4	0	99.6	0		24.6	75.4	0	0		0	0	0	0		
PHF	.000	.912	.500	.000	.913	.250	.000	.828	.000	.831	.653	.899	.000	.000	.867	.000	.000	.000	.000	.000	

File Name : Eastern@LevassorPM Site Code : 01290802 Start Date : 1/29/2008 Page No : 3

		Ea F	astern Av rom Nort	/e h			Le	avessor A From Eas	Ave st			E	astern A	ve th			L	evassor A From We	ve st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysi	is From 04	:00 PM to	05:30 P	M - Peał	(1 of 1																
Peak Hour for Enti	re Intersec	ction Begir	ns at 04:4	45 PM																	
04:45 PM	2	51	2	0	55	1	1	1	0	3	3	56	3	0	62	1	1	0	0	2	122
05:00 PM	5	51	4	0	60	0	0	4	0	4	3	60	4	0	67	1	1	1	0	3	134
05:15 PM	2	62	4	0	68	4	1	4	0	9	4	57	3	0	64	1	0	1	0	2	143
05:30 PM	4	66	2	0	72	3	0	1	0	4	3	52	1	0	56	0	0	0	0	0	132
Total Volume	13	230	12	0	255	8	2	10	0	20	13	225	11	0	249	3	2	2	0	7	531
% App. Total	5.1	90.2	4.7	0		40	10	50	0		5.2	90.4	4.4	0		42.9	28.6	28.6	0		
PHF	.650	.871	.750	.000	.885	.500	.500	.625	.000	.556	.813	.938	.688	.000	.929	.750	.500	.500	.000	.583	.928
Peak Hour Analysi Peak Hour for Eac	is From 04 h Approac	:00 PM to	05:30 Pl at:	M - Peał	x 1 of 1																
	04:45 PM					04:45 PM					04:45 PM					04:15 PN	1]
+0 mins.	2	51	2	0	55	1	1	1	0	3	3	56	3	0	62	1	0	1	0	2	
± 15 mins	5	51	4	0	60	0	0	4	0	4		60	4	0	67	0	1	1	0		

+15 mins.	5	51	4	0	60	0	0	4	0	4	3	60	4	0	67	0	1	1	0	2
+30 mins.	2	62	4	0	68	4	1	4	0	9	4	57	3	0	64	1	1	0	0	2
+45 mins.	4	66	2	0	72	3	0	1	0	4	3	52	1	0	56	1	1	1	0	3
Total Volume	13	230	12	0	255	8	2	10	0	20	13	225	11	0	249	3	3	3	0	9
% App. Total	5.1	90.2	4.7	0		40	10	50	0		5.2	90.4	4.4	0		33.3	33.3	33.3	0	
PHF	.650	.871	.750	.000	.885	.500	.500	.625	.000	.556	.813	.938	.688	.000	.929	.750	.750	.750	.000	.750

Appendix B Operational Analysis

Capacity Analysis

Intersection capacity analysis was conducted for the 6 study intersections on the Madison Avenue corridor. Capacity analysis was conducted using 2000 Highway Capacity Manual (HCM) methodologies as applied by Synchro version 5.0. HCM methodologies evaluate intersection operations in terms of Levels of Service (LOS). LOS is a function of the delay at the intersection and ranges from 'A' (no delay) to 'F' (failing). Separate LOS definitions are applied to unsignalized and signalized intersection operations. **Tables B-1 and B-2** describe the intersection Level-of-Service definitions by average control delay per vehicle and its characteristics for unsignalized and signalized intersection operations, respectively. These criteria are applied to individual movements and the entire intersection in the same way.

Level of Service	Average Delay (Sec/veh)	Description
Α	< 5.0	Little or no delay.
В	5.1 to 10.0	Short traffic delays.
С	10.1 to 20.0	Average traffic delays.
D	20.1 to 30.0	Long traffic delays.
E	30.1 to 45.0	Very long traffic delays.
F	> 45.0	Volume exceeds capacity.

 Table B-1: Unsignalized Intersection Level-of-Service Descriptions

Table B-2: Signalized Intersection Level-of-Service Description	S
---	---

Level of Service	Average Delay (Sec/veh)	Description
Α	≤ 01	Very low delay. Occurs when progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all.
В	> 10 and < 20	Occurs with good progression and/or short cycle lengths. More vehicles stop than for LOS A
С	> 20 and < 35	Higher delays result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear in this level. Significant numbers of vehicles stop although many still pass through the intersection without stopping.
D	> 35 and < 55	Longer delays may result from unfavorable progression, long cycle lengths and/or high volume to capacity (v/c) ratios. Many vehicles stop and the proportion of vehicles not stopping declines.
E	> 55 and < 80	Considered to be the limit of acceptable delay, these high delay values generally indicate poor progression, long cycle lengths and high v/c ratios. Individual cycle failures are frequent occurrences.
F	> 80	Considered to be unacceptable to most drivers, this condition often occurs with oversaturation. It may also occur at high v/c ratios below 1.00 with many individual cycle failures.

City of Covington

Capacity analysis was conducted for the AM and PM peak hours based on the redistributed volumes summarized in Figure 4. .

A PHF of 0.92 was used for all analysis scenarios. The PHF is used as a measure of flow intensity, and relates the total hourly volume to the peak 15 minute flow. A PHF can range from 1.0 indicating even flow throughout the hour and 0.25, indicating all total hourly traffic volumes occur during a single 15 minute period.

Signalized intersection analysis assumed an optimum cycle length as determined by Synchro algorithms.

Table B-3 summarizes the signalized and unsignalized LOS analysis for allscenarios evaluated. Output from the analysis is provided in this Appendix.

|--|

	Analysis	Alternative 1 Alternative 2				Alternative 2			
Intersection	Period	LOS	Delay (sec)	LOS	Delay (sec)	LOS	Delay (sec)		
Madison Avenue at	AM Peak	В	12.4	В	16	В	11.7		
19th Street	PM Peak	С	23.4	С	32.5	С	27.5		
Madison Avenue at	AM Peak	В	15.7	С	20.7	A	8		
20th Street	PM Peak	С	27.3	С	29.2	A	9		
Madison Avenue at	AM Peak	A	2.4	A	4.9	В	10.1		
Wallace Avenue	PM Peak	A	6.5	A	9.8	С	21.8		
Madison Avenue at Sterrett Avenue	AM Peak	В	14.8	D	29.5	В	14.1		
(Eastbound Left Turn) ¹	PM Peak	С	24.4	F	>80	Е	40.3		
Madison Avenue at Levassor Avenue	AM Peak	F	>80	F	>80	F	79.8		
(Westbound Left Turn) ¹	PM Peak	Е	41.4	F	>80	F	>80		
Madison Avenue at	AM Peak	D	45.9	F	>80	D	42.0		
Street)	PM Peak	D	35.7	D	52.0	С	34.2		

Note 1: Denotes Unsignalized intersection analysis by controlled approach

HCM Unsignalized Intersection Capacity Analysis 2: Levassor Avenue & Madison Avenue

	~	•	†	*	1	Ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations						
Sign Control	Stop		Frieta			Fı¢¢
Grade	0%		0%			0%
Volume (veh/h)	7	8	1684	0	4	391
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	8	9	1830	0	4	425
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)			200			
pX, platoon unblocked						
vC, conflicting volume	2052	915			1830	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	2052	915			1830	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	84	97			99	
cM capacity (veh/h)	47	275			330	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	16	1220	610	146	283	
Volume Left	8	0	0	4	0	
Volume Right	9	0	0	0	0	
cSH	85	1700	1700	330	1700	
Volume to Capacity	0.19	0.72	0.36	0.01	0.17	
Queue Length (ft)	17	0	0	1	0	
Control Delay (s)	57.2	0.0	0.0	0.7	0.0	
Lane LOS	F			А		
Approach Delay (s)	57.2	0.0		0.2		
Approach LOS	F					
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Ut	ilization		60.6%	IC	CU Leve	el of Servic

5/6/2008

		•	+	*	5	1		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations						-		
Ideal Flow (vphpl)	1900	1900	19	1900	1900	19		
Total Lost time (s)	4.0	4.0	4.0			4.0		
Lane Util. Factor	1.00	1.00	0.95			0.95		
Frt	1.00	0.85	1.00			1.00		
Flt Protected	0.95	1.00	1.00			1.00		
Satd. Flow (prot)	1770	1583	3539			3539		
Flt Permitted	0.95	1.00	1.00			1.00		
Satd. Flow (perm)	1770	1583	3539			3539		
Volume (vph)	191	20	750	0	0	364		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	208	22	815	0	0	396		
Lane Group Flow (vph)	208	22	815	0	0	396		
Turn Type		Perm						
Protected Phases	8		2			6		
Permitted Phases		8						
Actuated Green, G (s)	14.6	14.6	65.4			65.4		
Effective Green, g (s)	15.6	15.6	66.4			66.4		
Actuated q/C Ratio	0.17	0.17	0.74			0.74		
Clearance Time (s)	5.0	5.0	5.0			5.0		
Vehicle Extension (s)	3.0	3.0	3.0			3.0		
Lane Grp Cap (vph)	307	274	2611			2611		
v/s Ratio Prot	c0.12		c0.23			0.11		
v/s Ratio Perm		0.01						
v/c Ratio	0.68	0.08	0.31			0.15		
Uniform Delay, d1	34.8	31.2	4.0			3.5		
Progression Factor	1.00	1.00	0.33			0.76		
Incremental Delay, d2	5.8	0.1	0.2			0.1		
Delay (s)	40.7	31.3	1.6			2.8		
Level of Service	D	С	А			А		
Approach Delay (s)	39.8		1.6			2.8		
Approach LOS	D		А			А		
Intersection Summers								
Intersection Summary) a lavi		0.0					
HCM Volume to Control L			0.0	H		ver of Servic	e	e
Actuated Quale Langth			0.38	_		a at time (a)		
Actuated Cycle Length ((S)		90.0	5		DSt time (S)		
Intersection Capacity Ut	ilization		40.7%	IC	JU Leve	el of Service		

Critical Lane Group С

HCM Unsignalized Intersection Capacity Analysis 4: Sterrett & Madison Avenue

5/6/2008	
----------	--

	≯	_	\sim	~	-	•	•	ŧ	*		T	1
Movement	ĒBL	EBT	EBR	WBL	WBT	WBR	NBL	NB	NBR	SBL	SBT	SBR
Lane Configurations												
Sign Control		Stop			Stop			Fre🔶	1		Fate	
Grade		0%			0%			0%			0%	
Volume (veh/h)	2	0	5	0	0	0	0	695	571	3	295	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	2	0	5	0	0	0	0	755	621	3	321	3
Pedestrians								1				
Lane Width (ft)								12.0				
Walking Speed (ft/s)								4.0				
Percent Blockage								0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)											565	
pX, platoon unblocked												
vC, conflicting volume	1084	1705	163	929	1086	755	324			1376		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1084	1705	163	929	1086	755	324			1376		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	99	100	99	100	100	100	100			99		
cM capacity (veh/h)	170	90	852	220	214	351	1233			494		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	8	0	755	621	164	164						
Volume Left	2	0	0	0	3	0						
Volume Right	5	0	0	621	0	3						
cSH	398	1700	1700	1700	494	1700						
Volume to Capacity	0.02	0.00	0.44	0.37	0.01	0.10						
Queue Length (ft)	1	0	0	0	0	0						
Control Delay (s)	14.2	0.0	0.0	0.0	0.3	0.0						
Lane LOS	В	А			А							
Approach Delay (s)	14.2	0.0	0.0		0.2							
Approach LOS	В	А										
Intersection Summary												
Average Delay			0.1									
Intersection Capacity Uti	lization	1	60.8%	10	CU Leve	el of Ser	vice		В			

HCM Signalized Intersection Capacity Analysis 6: 20th Street & Madison Avenue

	٠		~	~	-	•	•	+	*		1	1
Movement	ÉBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations												
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	190	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0	4.0		4.0			4.0	
Lane Util. Factor		1.00			1.00	1.00		0.95			0.95	
Frt		0.97			1.00	0.85		0.99			0.99	
Flt Protected		0.98			0.96	1.00		1.00			0.99	
Satd. Flow (prot)		1764			1794	1583		3502			3490	
Flt Permitted		0.81			0.82	1.00		0.92			0.78	
Satd. Flow (perm)		1461			1533	1583		3229			2753	
Volume (vph)	22	12	9	54	17	64	39	661	39	47	244	13
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	24	13	10	59	18	70	42	718	42	51	265	14
Lane Group Flow (vph)	0	47	0	0	77	70	0	802	0	0	330	0
Turn Type	Perm			Perm		Perm	Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		8.2			8.2	8.2		71.8			71.8	
Effective Green, g (s)		9.2			9.2	9.2		72.8			72.8	
Actuated g/C Ratio		0.10			0.10	0.10		0.81			0.81	
Clearance Time (s)		5.0			5.0	5.0		5.0			5.0	
Vehicle Extension (s)		3.0			3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)		149			157	162		2612			2227	
v/s Ratio Prot												
v/s Ratio Perm		0.03			c0.05	0.04		c0.25			0.12	
v/c Ratio		0.32			0.49	0.43		0.31			0.15	
Uniform Delay, d1		37.5			38.2	37.9		2.2			1.9	
Progression Factor		1.00			1.00	1.00		0.07			0.95	
Incremental Delay, d2		1.2			2.4	1.8		0.3			0.1	
Delay (s)		38.7			40.6	39.8		0.4			1.9	
Level of Service		D			D	D		А			Α	
Approach Delay (s)		38.7			40.2			0.4			1.9	
Approach LOS		D			D			А			А	
Intersection Summary												
HCM Average Control D	elay		6.6	F	ICM Le	vel of Se	ervice		А			
HCM Volume to Capacit	y ratio		0.33									
Actuated Cycle Length (s)		90.0	S	Sum of I	ost time	(s)		8.0			
Intersection Capacity Ut	ilization		50.4%	10	CU Leve	el of Sei	rvice		А			
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 9: 19th Street & Madison Avenue

	≯	\mathbf{r}	1	t.	↓	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations								
Ideal Flow (vphpl)	1900	190 <mark>0</mark>	1900	190🖗	1900	1900		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95			
Frt	1.00	0.85	1.00	1.00	0.93			
Flt Protected	0.95	1.00	0.95	1.00	1.00			
Satd. Flow (prot)	1770	1583	1770	1863	3276			
Flt Permitted	0.95	1.00	0.57	1.00	1.00			
Satd. Flow (perm)	1770	1583	1064	1863	3276			
Volume (vph)	117	99	192	448	106	104		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	127	108	209	487	115	113		
Lane Group Flow (vph)	127	108	209	487	228	0		
Turn Type		Perm	pm+pt					
Protected Phases	4		5	2	6			
Permitted Phases		4	2					
Actuated Green, G (s)	11.2	11.2	68.8	68.8	58.6			
Effective Green, g (s)	12.2	12.2	69.8	69.8	59.6			
Actuated g/C Ratio	0.14	0.14	0.78	0.78	0.66			
Clearance Time (s)	5.0	5.0	4.0	5.0	5.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	240	215	874	1445	2169			
v/s Ratio Prot	c0.07		0.02	c0.26	0.07			
v/s Ratio Perm		0.07	0.17					
v/c Ratio	0.53	0.50	0.24	0.34	0.11			
Uniform Delay, d1	36.2	36.1	2.7	3.1	5.5			
Progression Factor	1.00	1.00	0.29	0.24	1.00			
Incremental Delay, d2	2.1	1.8	0.1	0.6	0.1			
Delay (s)	38.3	37.9	0.9	1.4	5.6			
Level of Service	D	D	А	А	А			
Approach Delay (s)	38.1			1.2	5.6			
Approach LOS	D			А	А			
Intersection Summary								
HCM Average Control D	elay		9.6	H	ICM Lev	vel of Service	А	
HCM Volume to Capacit	ty ratio		0.37					
Actuated Cycle Length (s)		90.0	S	Sum of Ic	ost time (s)	8.0	
Intersection Capacity Ut	ilization		39.3%	IC	CU Leve	el of Service	А	
c Critical Lane Group								

HCM Signalized Intersection Capacity Analysis 20: 26th Street & Madison Avenue

	≯	_		\sim	6	_	-	•	•	+	*	- \
Movement	ĒBL	EBT	EBR	EBR2	WBL2	WBL	WBT	WBR	NBL	NBT	NBR	SBL2
Lane Configurations												
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	19🛺	1900	1900	1900	1900	1900
Total Lost time (s)		4.0					4.0			4.0		
Lane Util. Factor		1.00					1.00			*0.88		
Frt		0.93					0.99			1.00		
Flt Protected		0.98					0.96			1.00		
Satd. Flow (prot)		1693					1774			3263		
Flt Permitted		0.98					0.70			1.00		
Satd. Flow (perm)		1693					1297			3263		
Volume (vph)	48	0	13	37	5	77	15	8	48	616	5	27
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	52	0	14	40	5	84	16	9	52	670	5	29
Lane Group Flow (vph)	0	106	0	0	0	0	114	0	0	727	0	0
Turn Type	Split				Split	Perm		С	ustom			Perm
Protected Phases	4	4			8		8		10	10		
Permitted Phases						8			10	10		6
Actuated Green, G (s)		8.3					10.8			17.0		
Effective Green, g (s)		9.3					11.8			18.0		
Actuated g/C Ratio		0.10					0.13			0.20		
Clearance Time (s)		5.0					5.0			5.0		
Vehicle Extension (s)		3.0					3.0			3.0		
Lane Grp Cap (vph)		175					170			653		
v/s Ratio Prot		c0.06								c0.22		
v/s Ratio Perm							c0.09					
v/c Ratio		0.61					0.67			1.11		
Uniform Delay, d1		38.6					37.2			36.0		
Progression Factor		1.00					1.00			1.00		
Incremental Delay, d2		5.8					9.9			70.6		
Delay (s)		44.4					47.2			106.6		
Level of Service		D					D			F		
Approach Delay (s)		44.4					47.2			106.6		
Approach LOS		D					D			F		
Intersection Summary												
HCM Average Control D	elay		54.1	ŀ	HCM Lev	vel of Se	ervice		D			
HCM Volume to Capacit	y ratio		0.77									
Actuated Cycle Length (s)		90.0	S	Sum of l	ost time	(s)		16.0			
Intersection Capacity Uti	ilization		82.0%	I	CU Leve	el of Sei	vice		D			
c Critical Lane Group												

5/6/2008

HCM Signalized Intersection Capacity Analysis 20: 26th Street & Madison Avenue

L	Ţ	1	*	•
SBL	SBT	SBR	NWL	NWR
190	190 <mark>1</mark> 3	1900	190	1900
4.0	4.0		4.0	4.0
1.00	1.00		1.00	*0.88
1.00	0.99		1.00	0.85
0.95	1.00		0.95	1.00
1770	1843		1770	2787
0.84	1.00		0.60	1.00
1562	1843		1122	2787
141	161	12	48	666
0.92	0.92	0.92	0.92	0.92
153	175	13	52	724
182	188	0	52	724
Perm			c	ustom
	6			2
6	-		2	2
33.9	33.9		33.9	33.9
34.9	34.9		34.9	34.9
0.39	0.39		0.39	0.39
5.0	5.0		5.0	5.0
3.0	3.0		3.0	3.0
606	715		435	1081
	0.10			c0.26
0.12	00		0.05	30.20
0.30	0.26		0.12	0.67
19.1	18.8		17.7	22.8
0.83	0.80		1.00	1.00
0.3	0.2		0.6	3.3
16.0	15.2		18.2	26.1
B	B		R	20.1 C
5	15.6		25.6	Ŭ
	B			
	_		5	
	190° 190° 190° 190° 190° 190° 190° 190° 190° 190° 1700 0.95 1770 0.84 1562 141 0.92 141 0.92 141 0.92 141 0.92 153 182 9 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 19.1 0.30 10.1 0.30 10.1 0.30 10.1 0.30 10.1 0.30 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.0 10.1 10.0 10.0 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.0 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.	I I 1905 1905 1906 1905 1.00 1.00 1.00 0.99 0.95 1.00 1.700 1843 0.84 1.00 1562 1843 141 161 0.92 0.92 153 175 182 188 Perm 6 33.9 33.9 34.9 34.9 0.30 0.30 606 715 0.30 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.10 0.12 0.30 0.26 19.1 18.8 0.83 0.80 0.3 0.2 16.0 15.2 B B 15.6 B	SBL SBT SBR 1900 1900 1900 100 1900 1900 1.00 1.00 1900 1.00 0.99 0.100 1.00 0.99 0.100 1.00 0.99 0.100 1.00 0.99 0.100 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.843 0.0 1562 1843 1.00 1562 1843 0.12 0.92 0.92 0.92 153 175 133 182 188 0 33.9 33.9 3.9 34.9 0.30 0.2 3.0 3.0 1.0 0.12 0.10 1.0 0.30 0.26 1.0 19.1 18.8 0.0 <td< td=""><td>SBL SBT SBR NWL 1900 1900 1900 1900 4.0 4.0 4.0 1.00 1.00 1.00 1.00 0.99 1.00 0.05 1.00 0.95 1770 1843 1770 0.84 1.00 0.60 1562 1843 1122 141 161 12 48 0.92 0.92 0.92 0.92 153 175 13 52 182 188 0 52 Perm </td></td<>	SBL SBT SBR NWL 1900 1900 1900 1900 4.0 4.0 4.0 1.00 1.00 1.00 1.00 0.99 1.00 0.05 1.00 0.95 1770 1843 1770 0.84 1.00 0.60 1562 1843 1122 141 161 12 48 0.92 0.92 0.92 0.92 153 175 13 52 182 188 0 52 Perm

	-	•	† 1	1	×	Ţ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT		 	
Lane Configurations			_						
Sign Control	Stop		Free			F ¢₽			
Grade	0%		0%			0%			
Volume (veh/h)	14	8	827	0	2	1129			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (veh/h)	15	9	899	0	2	1227			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None								
Median storage veh)									
Upstream signal (ft)			200						
pX, platoon unblocked									
vC, conflicting volume	1517	449			899				
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	1517	449			899				
tC, single (s)	6.8	6.9			4.1				
tC, 2 stage (s)									
tF (s)	3.5	3.3			2.2				
p0 queue free %	86	98			100				
cM capacity (veh/h)	110	557			751				
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2				
Volume Total	24	599	300	411	818				
Volume Left	15	0	0	2	0				
Volume Right	9	0	0	0	0				
cSH	155	1700	1700	751	1700				
Volume to Capacity	0.15	0.35	0.18	0.00	0.48				
Queue Length (ft)	13	0.00	0	0.00	0				
Control Delay (s)	32.5	0.0	0.0	01	0.0				
Lane LOS	D	0.0	0.0	Δ	0.0				
Approach Delay (s)	32.5	0.0		0.0					
Approach LOS	D	0.0		0.0					
Interpretion Summers									
Intersection Summary			<u> </u>						
Average Delay			0.4						
Intersection Capacity Ut	ilization		44.5%	IC	U Leve	el of Servic	e		А

		A.	+	*	1	1	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations							
Ideal Flow (vphpl)	1900	190	19	1900	1900	19	
Total Lost time (s)	4.0	4.0	4.0			4.0	
Lane Util. Factor	1.00	1.00	0.95			0.95	
Frt	1.00	0.85	1.00			1.00	
Flt Protected	0.95	1.00	1.00			1.00	
Satd. Flow (prot)	1770	1583	3539			3539	
Flt Permitted	0.95	1.00	1.00			1.00	
Satd. Flow (perm)	1770	1583	3539			3539	
Volume (vph)	488	8	591	0	0	638	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	530	9	642	0	0	693	
Lane Group Flow (vph)	530	9	642	0	0	693	
Turn Type		Perm					
Protected Phases	8		2			6	
Permitted Phases		8	_				
Actuated Green, G (s)	35.4	35.4	64.6			64.6	
Effective Green, a (s)	36.4	36.4	65.6			65.6	
Actuated g/C Ratio	0.33	0.33	0.60			0.60	
Clearance Time (s)	5.0	5.0	5.0			5.0	
Vehicle Extension (s)	3.0	3.0	3.0			3.0	
Lane Grp Cap (vph)	586	524	2111			2111	
v/s Ratio Prot	c0.30		0.18			c0.20	
v/s Ratio Perm	20.00	0.01	00				
v/c Ratio	0.90	0.02	0.30			0.33	
Uniform Delay, d1	35.1	24.8	10.9			11.1	
Progression Factor	1.00	1.00	0.65			0.55	
Incremental Delay, d2	17.4	0.0	0.4			0.4	
Delay (s)	52.5	24.8	7.5			6.6	
Level of Service	D	C	A			A	
Approach Delay (s)	52.1	-	7.5			6.6	
Approach LOS	D		A			A	
	_						
Intersection Summary							
HCM Average Control D	Delay		20.0	ŀ	ICM Lev	vel of Serv	1
HCM Volume to Capaci	ty ratio		0.53				
Actuated Cycle Length ((s)		110.0	S	Sum of lo	ost time (s	;)
Intersection Capacity Ut	tilization		55.2%	10	CU Leve	el of Servio	С
c Critical Lane Group							

Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis 4: Sterrett & Madison Avenue

5/6/2008

	٠	_	\sim	~	-	•	•	ŧ	*	1	T	1
Movement	ĒBL	EBT	EBR	WBL	WBT	WBR	NBL	NB	NBR	SBĹ	SBT	SBR
Lane Configurations												
Sign Control		Stop			Stop			Fre🔶	*		F	
Grade		0%			0%			0%			0%	
Volume (veh/h)	2	0	5	0	0	0	0	478	163	20	941	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	2	0	5	0	0	0	0	520	177	22	1023	2
Pedestrians								1				
Lane Width (ft)								12.0				
Walking Speed (ft/s)								4.0				
Percent Blockage								0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)											565	
pX, platoon unblocked	0.93	0.93	0.93	0.93	0.93		0.93					
vC, conflicting volume	1587	1764	514	1081	1588	520	1025			697		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1556	1747	402	1012	1557	520	952			697		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	97	100	99	100	100	100	100			98		
cM capacity (veh/h)	70	77	555	175	101	501	667			895		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	8	0	520	177	533	514						
Volume Left	2	0	0	0	22	0						
Volume Right	5	0	0	177	0	2						
cSH	186	1700	1700	1700	895	1700						
Volume to Capacity	0.04	0.00	0.31	0.10	0.02	0.30						
Queue Length (ft)	3	0	0	0	2	0						
Control Delay (s)	25.2	0.0	0.0	0.0	0.7	0.0						
Lane LOS	D	А			А							
Approach Delay (s)	25.2	0.0	0.0		0.3							
Approach LOS	D	А										
Intersection Summary												
Average Delay			0.3									
Intersection Capacity Uti	ilization	1	53.3%	10	CU Leve	el of Ser	vice		А			

HCM Signalized Intersection Capacity Analysis 6: 20th Street & Madison Avenue

	٠		~	/	-	•	•	+	*		1	1
Movement	ÉBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations												
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	190	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0	4.0		4.0			4.0	
Lane Util. Factor		1.00			1.00	1.00		0.95			0.95	
Frt		0.97			1.00	0.85		0.99			0.99	
Flt Protected		0.97			0.96	1.00		1.00			0.99	
Satd. Flow (prot)		1767			1781	1583		3507			3482	
Flt Permitted		0.81			0.77	1.00		0.95			0.82	
Satd. Flow (perm)		1466			1440	1583		3340			2873	
Volume (vph)	22	10	7	76	6	101	4	491	30	68	525	46
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	24	11	8	83	7	110	4	534	33	74	571	50
Lane Group Flow (vph)	0	43	0	0	90	110	0	571	0	0	695	0
Turn Type	Perm			Perm		Perm	Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		11.6			11.6	11.6		88.4			88.4	
Effective Green, g (s)		12.6			12.6	12.6		89.4			89.4	
Actuated g/C Ratio		0.11			0.11	0.11		0.81			0.81	
Clearance Time (s)		5.0			5.0	5.0		5.0			5.0	
Vehicle Extension (s)		3.0			3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)		168			165	181		2715			2335	
v/s Ratio Prot												
v/s Ratio Perm		0.03			0.06	c0.07		0.17			c0.24	
v/c Ratio		0.26			0.55	0.61		0.21			0.30	
Uniform Delay, d1		44.4			46.0	46.3		2.3			2.5	
Progression Factor		1.00			1.00	1.00		0.50			0.45	
Incremental Delay, d2		0.8			3.7	5.7		0.2			0.3	
Delay (s)		45.2			49.6	52.0		1.3			1.4	
Level of Service		D			D	D		А			A	
Approach Delay (s)		45.2			51.0			1.3			1.4	
Approach LOS		D			D			A			A	
Intersection Summary												
HCM Average Control D	elay		9.2	F	ICM Le	vel of Se	ervice		А			
HCM Volume to Capacit	y ratio		0.34									
Actuated Cycle Length (s)		110.0	S	Sum of I	ost time	(S)		8.0			
Intersection Capacity Ut	ilization		57.0%	10	CU Leve	el of Sei	rvice		А			
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 9: 19th Street & Madison Avenue

	≯	\mathbf{i}	-		Ļ	-		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations								
Ideal Flow (vphpl)	1900	190	1900	190ቀ	1900	1900		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95			
Frt	1.00	0.85	1.00	1.00	0.95			
Flt Protected	0.95	1.00	0.95	1.00	1.00			
Satd. Flow (prot)	1770	1583	1770	1863	3374			
Flt Permitted	0.95	1.00	0.27	1.00	1.00			
Satd. Flow (perm)	1770	1583	508	1863	3374			
Volume (vph)	285	281	186	470	485	220		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	310	305	202	511	527	239		
Lane Group Flow (vph)	310	305	202	511	766	0		
Turn Type		Perm	pm+pt					
Protected Phases	4		5	2	6			
Permitted Phases		4	2					
Actuated Green, G (s)	23.9	23.9	77.1	76.1	49.1			
Effective Green, g (s)	24.9	24.9	77.1	77.1	50.1			
Actuated g/C Ratio	0.23	0.23	0.70	0.70	0.46			
Clearance Time (s)	5.0	5.0	4.0	5.0	5.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	401	358	620	1306	1537			
v/s Ratio Prot	0.18		0.07	c0.27	c0.23			
v/s Ratio Perm		c0.19	0.16					
v/c Ratio	0.77	0.85	0.33	0.39	0.50			
Uniform Delay, d1	39.9	40.8	13.9	6.8	21.1			
Progression Factor	1.00	1.00	0.30	0.25	1.00			
Incremental Delay, d2	9.0	17.4	0.3	0.9	1.2			
Delay (s)	48.9	58.2	4.4	2.6	22.3			
Level of Service	D	E	А	Α	С			
Approach Delay (s)	53.5			3.1	22.3			
Approach LOS	D			А	С			
Intersection Summary								
HCM Average Control D	elay		24.9	ŀ	ICM Lev	vel of Service	С	
HCM Volume to Capacit	y ratio		0.55					
Actuated Cycle Length (s)		110.0	S	Sum of lo	ost time (s)	8.0	
Intersection Capacity Uti	lization		60.6%	(CU Leve	el of Service	В	
c Critical Lane Group								

HCM Signalized Intersection Capacity Analysis 20: 26th Street & Madison Avenue

	٠	_		~	6		-	•	•	+	*	
Movement	ÉBL	EBT	EBR	EBR2	WBL2	WBL	WBT	WBR	NBL	NBT	NBR	SBL2
Lane Configurations												
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0					4.0			4.0		
Lane Util. Factor		1.00					1.00			*0.88		
Frt		0.95					1.00			1.00		
Flt Protected		0.98					0.95			0.99		
Satd. Flow (prot)		1735					1774			3248		
Flt Permitted		0.98					0.66			0.99		
Satd. Flow (perm)		1735					1221			3248		
Volume (vph)	29	28	19	19	56	56	2	1	65	356	5	27
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	32	30	21	21	61	61	2	1	71	387	5	29
Lane Group Flow (vph)	0	104	0	0	0	0	125	0	0	463	0	0
Turn Type	Split				Split	Perm		С	ustom			Perm
Protected Phases	4	4			8		8		10	10		
Permitted Phases						8			10	10		6
Actuated Green, G (s)		11.2					14.2			17.6		
Effective Green, g (s)		12.2					15.2			18.6		
Actuated g/C Ratio		0.11					0.14			0.17		
Clearance Time (s)		5.0					5.0			5.0		
Vehicle Extension (s)		3.0					3.0			3.0		
Lane Grp Cap (vph)		192					169			549		
v/s Ratio Prot		c0.06								c0.14		
v/s Ratio Perm							c0.10					
v/c Ratio		0.54					0.74			0.84		
Uniform Delay, d1		46.3					45.5			44.3		
Progression Factor		1.00					1.00			1.00		
Incremental Delay, d2		3.1					15.5			11.3		
Delay (s)		49.4					61.0			55.6		
Level of Service		D					E			Е		
Approach Delay (s)		49.4					61.0			55.6		
Approach LOS		D					E			E		
Intersection Summary												
HCM Average Control D	elay		34.1	ŀ	HCM Le	vel of Se	ervice		С			
HCM Volume to Capacit	y ratio		0.72									
Actuated Cycle Length (s)		110.0	S	Sum of I	ost time	(s)		16.0			
Intersection Capacity Uti	ilization		80.0%	I	CU Leve	el of Sei	vice		D			
c Critical Lane Group												

5/6/2008

HCM Signalized Intersection Capacity Analysis 20: 26th Street & Madison Avenue

	L	Ţ	1	*	•
Movement	SBL	SBT	SBR	NWL	NWŘ
Lane Configurations					
Ideal Flow (vphpl)	190	190 <mark>1</mark> 3	1900	190	1900
Total Lost time (s)	4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00		1.00	*0.88
Frt	1.00	0.99		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00
Satd. Flow (prot)	1770	1845		1770	2787
Flt Permitted	0.97	1.00		0.29	1.00
Satd. Flow (perm)	1800	1845		542	2787
Volume (vph)	424	489	34	65	262
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	461	532	37	71	285
Lane Group Flow (vph)	490	569	0	71	285
Turn Type	Perm			C	ustom
Protected Phases		6			2
Permitted Phases	6			2	2
Actuated Green, G (s)	47.0	47.0		47.0	47.0
Effective Green, g (s)	48.0	48.0		48.0	48.0
Actuated g/C Ratio	0.44	0.44		0.44	0.44
Clearance Time (s)	5.0	5.0		5.0	5.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	785	805		237	1216
v/s Ratio Prot		c0.31			0.10
v/s Ratio Perm	0.27	30.01		0.13	00
v/c Ratio	0.62	0.71		0.30	0.23
Uniform Delay, d1	24.0	25.3		20.1	19.5
Progression Factor	0.91	0.90		1.00	1.00
Incremental Delay d2	1.5	27		3.2	0.5
Delay (s)	23.3	25.5		23.3	19.9
Level of Service	0	 C		0.0	B
Approach Delay (s)	J	24.5		20.6	2
Approach LOS		C			
		3		-	
Intersection Summary					

HCM Unsignalized Intersection Capacity Analysis 2: Levassor Avenue & Madison Avenue

	~	•	†	*	\	T		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations								
Sign Control	Stop		Fteta			F¢₽		
Grade	0%		0%			0%		
Volume (veh/h)	7	8	1834	0	4	491		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (veh/h)	8	9	1993	0	4	534		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	None							
Median storage veh)								
Upstream signal (ft)			200					
pX, platoon unblocked								
vC, conflicting volume	2269	997			1993			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	2269	997			1993			
tC, single (s)	6.8	6.9			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	77	96			98			
cM capacity (veh/h)	34	243			285			
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2			
Volume Total	16	1329	664	182	356			
Volume Left	8	0	0	4	0			
Volume Right	9	0	0	0	0			
cSH	62	1700	1700	285	1700			
Volume to Capacity	0.26	0.78	0.39	0.02	0.21			
Queue Length (ft)	23	0	0	1	0			
Control Delay (s)	82.3	0.0	0.0	0.7	0.0			
Lane LOS	F			А				
Approach Delay (s)	82.3	0.0		0.2				
Approach LOS	F							
Intersection Summary								
Average Delay			0.6					
Intersection Capacity Ut	ilization		65.1%	IC	CU Leve	el of Servic	e	

	~	•	+	*		1
Movement	WBL	WBR	NB	NBR	SBL	SBT
Lane Configurations						
Ideal Flow (vphpl)	1900	190 <mark>0</mark>	19	1900	1900	1990
Total Lost time (s)	4.0	4.0	4.0			4.0
Lane Util. Factor	1.00	1.00	0.95			0.95
Frt	1.00	0.85	1.00			1.00
Flt Protected	0.95	1.00	1.00			1.00
Satd. Flow (prot)	1770	1583	3539			3539
Flt Permitted	0.95	1.00	1.00			1.00
Satd. Flow (perm)	1770	1583	3539			3539
Volume (vph)	40	20	1300	0	0	615
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	43	22	1413	0	0	668
Lane Group Flow (vph)	43	22	1413	0	0	668
Turn Type		Perm				
Protected Phases	8		2			6
Permitted Phases		8				
Actuated Green, G (s)	7.0	7.0	103.0			103.0
Effective Green, g (s)	8.0	8.0	104.0			104.0
Actuated g/C Ratio	0.07	0.07	0.87			0.87
Clearance Time (s)	5.0	5.0	5.0			5.0
Vehicle Extension (s)	3.0	3.0	3.0			3.0
Lane Grp Cap (vph)	118	106	3067			3067
v/s Ratio Prot	c0.02		c0.40			0.19
v/s Ratio Perm		0.01				
v/c Ratio	0.36	0.21	0.46			0.22
Uniform Delay, d1	53.6	53.0	1.8			1.3
Progression Factor	1.00	1.00	0.27			0.41
Incremental Delay, d2	1.9	1.0	0.4			0.2
Delay (s)	55.5	54.0	0.9			0.7
Level of Service	Е	D	А			А
Approach Delay (s)	55.0		0.9			0.7
Approach LOS	D		А			А
Intersection Summarv						

Intersection Summary				
HCM Average Control Delay	2.4	HCM Level of Service	А	
HCM Volume to Capacity ratio	0.45			
Actuated Cycle Length (s)	120.0	Sum of lost time (s)	8.0	
Intersection Capacity Utilization	49.1%	ICU Level of Service	А	
c Critical Lane Group				

HCM Unsignalized Intersection Capacity Analysis 4: Sterrett & Madison Avenue

5/6/2008	
----------	--

	٠		\mathbf{x}	~	+	•	•	ŧ	-	\	Ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations												
Sign Control		Stop			Stop			Free			F¢¢	
Grade		0%			0%			0%			0%	
Volume (veh/h)	2	0	5	0	0	0	0	1245	170	3	395	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	2	0	5	0	0	0	0	1353	185	3	429	3
Pedestrians								1				
Lane Width (ft)								12.0				
Walking Speed (ft/s)								4.0				
Percent Blockage								0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)											565	
pX, platoon unblocked												
vC, conflicting volume	1114	1976	217	1673	1885	769	433			1538		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1114	1976	217	1673	1885	769	433			1538		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	99	100	99	100	100	100	100			99		
cM capacity (veh/h)	162	61	786	62	69	344	1123			428		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	8	0	902	636	218	218						
Volume Left	2	0	0	0	3	0						
Volume Right	5	0	0	185	0	3						
cSH	374	1700	1700	1700	428	1700						
Volume to Capacity	0.02	0.00	0.53	0.37	0.01	0.13						
Queue Length (ft)	2	0	0	0	1	0						
Control Delay (s)	14.8	0.0	0.0	0.0	0.3	0.0						
Lane LOS	В	А			А							
Approach Delay (s)	14.8	0.0	0.0		0.2							
Approach LOS	В	А										
Intersection Summary												
Average Delay			0.1									
Intersection Capacity Uti	lization		53.3%	10	CU Leve	el of Ser	vice		A			

HCM Signalized Intersection Capacity Analysis 6: 20th Street & Madison Avenue

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations Ideal Flow (vphpl) 1900 190
Lane Configurations Ideal Flow (vphpl) 1900
Ideal Flow (vphpl)19001
Total Lost time (s)4.04.04.04.04.0Lane Util. Factor1.001.001.001.000.95Frt0.971.000.881.000.850.99
Lane Util. Factor 1.00 1.00 1.00 1.00 0.95 Frt 0.97 1.00 0.88 1.00 0.85 0.99
Frt 0.97 1.00 0.88 1.00 0.85 0.99
Fit Protected 0.98 0.95 1.00 1.00 0.99
Satd. Flow (prot) 1764 1770 1640 1858 1583 3490
Flt Permitted 0.86 0.76 1.00 0.96 1.00 0.74
Satd. Flow (perm) 1561 1409 1640 1795 1583 2609
Volume (vph) 22 12 9 304 17 64 39 661 589 47 244 13
Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Adj. Flow (vph) 24 13 10 330 18 70 42 718 640 51 265 14
Lane Group Flow (vph) 0 47 0 330 88 0 0 760 640 0 330 0
Turn Type Perm Perm Perm Perm Perm
Protected Phases 4 8 2 6
Permitted Phases 4 8 2 2 6
Actuated Green, G (s) 31.9 31.9 31.9 78.1 78.1 78.1
Effective Green, g (s) 32.9 32.9 32.9 79.1 79.1 79.1
Actuated g/C Ratio 0.27 0.27 0.27 0.66 0.66 0.66
Clearance Time (s) 5.0 5.0 5.0 5.0 5.0
Vehicle Extension (s) 3.0
Lane Grp Cap (vph) 428 386 450 1183 1043 1720
v/s Ratio Prot 0.05
v/s Ratio Perm 0.03 c0.23 c0.42 0.40 0.13
v/c Ratio 0.11 0.85 0.20 0.64 0.61 0.19
Uniform Delay, d1 32.6 41.3 33.4 12.1 11.7 8.0
Progression Factor 1.00 1.00 1.00 0.30 0.25 0.98
Incremental Delay, d2 0.1 16.6 0.2 2.5 2.5 0.2
Delay (s) 32.7 57.9 33.6 6.1 5.4 8.1
Level of Service C E C A A A
Approach Delay (s) 32.7 52.8 5.8 8.1
Approach LOS C D A A
Intersection Summary
HCM Average Control Delay 15.7 HCM Level of Service B
HCM Volume to Capacity ratio 0.70
Actuated Cycle Length (s) 120.0 Sum of lost time (s) 8.0
Intersection Capacity Utilization 84.4% ICU Level of Service D
c Critical Lane Group

HCM Signalized Intersection Capacity Analysis 9: 19th Street & Madison Avenue

	≯	\mathbf{i}	•	†	Ţ	-		
Movement	EBL	EBR	NBL	NB ' T	SBT	SBR		
Lane Configurations								
Ideal Flow (vphpl)	1900	190 <mark>0</mark>	1900	190💠	1900	1900		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95			
Frt	1.00	0.85	1.00	1.00	0.93			
Flt Protected	0.95	1.00	0.95	1.00	1.00			
Satd. Flow (prot)	1770	1583	1770	1863	3276			
Flt Permitted	0.95	1.00	0.58	1.00	1.00			
Satd. Flow (perm)	1770	1583	1086	1863	3276			
Volume (vph)	117	99	192	448	106	104		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	127	108	209	487	115	113		
Lane Group Flow (vph)	127	108	209	487	228	0		
Turn Type		Perm	pm+pt					
Protected Phases	4		5	2	6			
Permitted Phases		4	2					
Actuated Green, G (s)	13.2	13.2	96.8	96.8	86.7			
Effective Green, g (s)	14.2	14.2	97.8	97.8	87.7			
Actuated g/C Ratio	0.12	0.12	0.82	0.82	0.73			
Clearance Time (s)	5.0	5.0	4.0	5.0	5.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	209	187	920	1518	2394			
v/s Ratio Prot	c0.07		0.01	c0.26	0.07			
v/s Ratio Perm		0.07	0.17					
v/c Ratio	0.61	0.58	0.23	0.32	0.10			
Uniform Delay, d1	50.3	50.1	2.4	2.8	4.7			
Progression Factor	1.00	1.00	0.12	0.12	1.00			
Incremental Delay, d2	4.9	4.3	0.1	0.5	0.1			
Delay (s)	55.2	54.3	0.4	0.8	4.8			
Level of Service	Е	D	А	А	А			
Approach Delay (s)	54.8			0.7	4.8			
Approach LOS	D			А	А			
Intersection Summary								
HCM Average Control D	elay		12.4	F	ICM Lev	vel of Service	В	
HCM Volume to Capacit	ty ratio		0.36					
Actuated Cycle Length (s)		120.0	S	sum of lo	ost time (s)	8.0	
Intersection Capacity Ut	ilization		39.3%	10	CU Leve	of Service	А	
c Critical Lane Group								

HCM Signalized Intersection Capacity Analysis 20: 26th Street & Madison Avenue

	≯			\sim	5	~	-	•	•	+	*	- \
Movement	ĒBL	EBT	EBR	EBR2	WBL2	WBL	WBT	WBR	NBL	NB	NBR	SBL2
Lane Configurations												
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0					4.0			4.0		
Lane Util. Factor		1.00					1.00			*0.88		
Frt		0.93					0.99			1.00		
Flt Protected		0.98					0.96			1.00		
Satd. Flow (prot)		1693					1774			3263		
Flt Permitted		0.98					0.70			1.00		
Satd. Flow (perm)		1693					1297			3263		
Volume (vph)	48	0	13	37	5	77	15	8	48	616	5	27
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	52	0	14	40	5	84	16	9	52	670	5	29
Lane Group Flow (vph)	0	106	0	0	0	0	114	0	0	727	0	0
Turn Type	Split				Split	Perm		С	ustom			Perm
Protected Phases	4	4			8		8		10	10		
Permitted Phases						8			10	10		6
Actuated Green, G (s)		11.2					13.7			27.6		
Effective Green, g (s)		12.2					14.7			28.6		
Actuated g/C Ratio		0.10					0.12			0.24		
Clearance Time (s)		5.0					5.0			5.0		
Vehicle Extension (s)		3.0					3.0			3.0		
Lane Grp Cap (vph)		172					159			778		
v/s Ratio Prot		c0.06								c0.22		
v/s Ratio Perm							c0.09					
v/c Ratio		0.62					0.72			0.93		
Uniform Delay, d1		51.7					50.6			44.8		
Progression Factor		1.00					1.00			1.00		
Incremental Delay, d2		6.4					14.3			18.1		
Delay (s)		58.1					64.9			62.9		
Level of Service		E					E			E		
Approach Delay (s)		58.1					64.9			62.9		
Approach LOS		E					E			E		
Intersection Summary												
HCM Average Control D	elay		45.9	ŀ	HCM Le	vel of Se	ervice		D			
HCM Volume to Capacit	y ratio		0.80									
Actuated Cycle Length (s)		120.0	S	Sum of I	ost time	(s)		16.0			
Intersection Capacity Ut	ilization		93.7%	I	CU Leve	el of Sei	vice		E			
c Critical Lane Group												

5/6/2008

HCM Signalized Intersection Capacity Analysis 20: 26th Street & Madison Avenue

	L.	Ļ	1	*	•
Movement	SBL	SBT	SBR	NWL	NWR
Lane Configurations					
Ideal Flow (vphpl)	190	190 <mark>1</mark> 3	1900	190	1900
Total Lost time (s)	4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00		1.00	*0.88
Frt	1.00	0.99		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00
Satd. Flow (prot)	1770	1843		1770	2787
Flt Permitted	0.74	1.00		0.46	1.00
Satd. Flow (perm)	1376	1843		865	2787
Volume (vph)	<u>241</u>	<u>161</u>	12	48	816
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	262	175	13	52	887
Lane Group Flow (vph)	291	188	0	52	887
Turn Type	Perm			C	ustom
Protected Phases		6			2
Permitted Phases	6			2	2
Actuated Green, G (s)	47.5	47.5		47.5	47.5
Effective Green, g (s)	48.5	48.5		48.5	48.5
Actuated g/C Ratio	0.40	0.40		0.40	0.40
Clearance Time (s)	5.0	5.0		5.0	5.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	556	745		350	1126
v/s Ratio Prot		0.10			c0.32
v/s Ratio Perm	0.21			0.06	
v/c Ratio	0.52	0.25		0.15	0.79
Uniform Delay, d1	27.0	23.7		22.7	31.3
Progression Factor	1.21	1.21		1.00	1.00
Incremental Delay, d2	0.9	0.2		0.9	5.6
Delay (s)	33.7	28.9		23.6	36.9
Level of Service	С	C		C	D
Approach Delay (s)	3	31.8		36.1	
Approach LOS		С		D	
		-			
Intersection Summary					

						+ -		
	WBL	WBR	NBI	NBR	SBL	SRI		
Lane Configurations	0124					= + +		
Sign Control	Stop					Fire		
Grade	0%		0%			0%		
Volume (veh/h)	14	8	927	0	2	1229		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (veh/h)	15	9	1008	0	2	1336		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	None							
Median storage veh)								
Upstream signal (ft)			200					
pX, platoon unblocked								
vC, conflicting volume	1680	504			1008			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	1680	504			1008			
tC, single (s)	6.8	6.9			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	82	98			100			
cM capacity (veh/h)	85	513			683			
				0.0.4				
Direction, Lane #	VVB 1	NB 1	NB 2	SB 1	SB 2			
Volume Total	24	672	336	447	891			
Volume Left	15	0	0	2	0			
Volume Right	9	0	0	0	0			
cSH	122	1700	1700	683	1700			
Volume to Capacity	0.20	0.40	0.20	0.00	0.52			
Queue Length (ft)	17	0	0	0	0			
Control Delay (s)	41.4	0.0	0.0	0.1	0.0			
Lane LOS	E			А				
Approach Delay (s)	41.4	0.0		0.0				
Approach LOS	E							
Intersection Summary								
Average Delay			04				ļ	
Intersection Canacity Lit	ilization		47.6%	10		el of Service	1	ervice
intersection capacity Of	mzauon		-1.0/0	N			ت	

Movement WBL WBR NBT NBR SBL SBT Lane Configurations Ideal Flow (vphpl) 1900 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <t< th=""></t<>
Lane ConfigurationsIdeal Flow (vphpl)19001900190019001900Total Lost time (s)4.04.04.04.0Lane Util. Factor1.001.000.950.95Frt1.000.851.001.00Flt Protected0.951.001.00Satd. Flow (prot)177015833539Std. Flow (perm)177015833539Satd. Flow (perm)177015833539Satd. Flow (perm)177015833539Volume (vph)135879100Peak-hour factor, PHF0.920.920.920.920.92Adj. Flow (vph)1479860001174Lane Group Flow (vph)1479860001174Turn TypePermPerm117411741174Protected Phases8266Permitted Phases8266Permitted Phases8266Permitted Phases896.896.8Actuated Green, G (s)14.214.295.895.8Effective Green, g (s)15.215.296.896.8Actuated g/C Ratio0.130.130.810.81Clearance Time (s)5.05.05.05.0Vehicle Extension (s)3.03.03.03.0Lane Grp Cap (vph)224201 <t< td=""></t<>
Ideal Flow (vphpl)1900190019001900190019001900Total Lost time (s)4.04.04.04.0Lane Util. Factor1.001.000.950.95Frt1.000.851.001.00Flt Protected0.951.001.00Satd. Flow (prot)177015833539Std. Flow (perm)177015833539Satd. Flow (perm)177015833539Volume (vph)135879100Peak-hour factor, PHF0.920.920.920.920.92Adj. Flow (vph)147986000Protected Phases826Permitted Phases826Permitted Phases826Actuated Green, G (s)14.214.295.895.8Effective Green, g (s)15.215.296.896.8Actuated g/C Ratio0.130.130.810.81Clearance Time (s)5.05.05.05.0Vehicle Extension (s)3.03.03.03.0Lane Grp Cap (vph)22420128552855
Total Lost time (s)4.04.04.04.04.0Lane Util. Factor1.001.000.950.95Frt1.000.851.001.00Flt Protected0.951.001.00Satd. Flow (prot)177015833539Satd. Flow (perm)177015833539Volume (vph)13587910O1080Peak-hour factor, PHF0.920.920.92Adj. Flow (vph)14798600Protected Phases826Permitted Phases826Permitted Phases826Actuated Green, G (s)14.214.295.895.8Effective Green, g (s)15.215.296.896.8Actuated g/C Ratio0.130.130.810.81Clearance Time (s)5.05.05.05.0Vehicle Extension (s)3.03.03.03.0Lane Grp Cap (vph)22420128552855
Lane Util. Factor1.001.000.950.95Frt1.000.851.001.00Flt Protected0.951.001.00Satd. Flow (prot)177015833539Satd. Flow (perm)177015833539Satd. Flow (perm)177015833539Volume (vph)13587910O1.001.00Peak-hour factor, PHF0.920.920.92O.920.920.920.920.92Adj. Flow (vph)147986000Itrun TypePermProtected Phases826Permitted Phases826Actuated Green, G (s)14.214.295.895.8Effective Green, g (s)15.215.296.896.8Actuated g/C Ratio0.130.130.810.81Clearance Time (s)5.05.05.05.0Vehicle Extension (s)3.03.03.03.0Lane Grp Cap (vph)22420128552855
Frt1.000.851.001.00Flt Protected0.951.001.001.00Satd. Flow (prot)1770158335393539Flt Permitted0.951.001.001.00Satd. Flow (perm)1770158335393539Volume (vph)135879100Peak-hour factor, PHF0.920.920.920.920.92Adj. Flow (vph)1479860001174Lane Group Flow (vph)1479860001174Turn TypePermPermPermitted Phases826Permitted Phases8266Actuated Green, G (s)14.214.295.895.8Effective Green, g (s)15.215.296.896.8Actuated g/C Ratio0.130.130.810.81Clearance Time (s)5.05.05.05.05.0Vehicle Extension (s)3.03.03.03.0Lane Grp Cap (vph)22420128552855
Flt Protected 0.95 1.00 1.00 1.00 Satd. Flow (prot) 1770 1583 3539 3539 Flt Permitted 0.95 1.00 1.00 1.00 Satd. Flow (perm) 1770 1583 3539 3539 Volume (vph) 135 8 791 0 0 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 147 9 860 0 0 1174 Lane Group Flow (vph) 147 9 860 0 0 1174 Turn TypePermPerm 1770 15.2 15.2 95.8 Actuated Green, G (s) 14.2 14.2 95.8 95.8 Effective Green, g (s) 15.2 15.2 96.8 96.8 Actuated g/C Ratio 0.13 0.13 0.81 0.81 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 224 201 2855 2855
Satd. Flow (prot) 1770 1583 3539 3539 Flt Permitted 0.95 1.00 1.00 1.00 Satd. Flow (perm) 1770 1583 3539 3539 Volume (vph) 135 8 791 0 0 1080 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 147 9 860 0 0 1174 Lane Group Flow (vph) 147 9 860 0 0 1174 Lane Group Flow (vph) 147 9 860 0 0 1174 Lane Group Flow (vph) 147 9 860 0 0 1174 Lane Group Flow (vph) 147 9 860 0 0 1174 Protected Phases 8 2 6 <t< td=""></t<>
Flt Permitted 0.95 1.00 1.00 1.00 Satd. Flow (perm) 1770 1583 3539 3539 Volume (vph) 135 8 791 0 0 1080 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 147 9 860 0 0 1174 Lane Group Flow (vph) 147 9 860 0 0 1174 Turn TypePermProtected Phases 8 2 6 Permitted Phases 8 2 6 Permitted Phases 8 2 6 Actuated Green, G (s) 14.2 14.2 95.8 95.8 Effective Green, g (s) 15.2 15.2 96.8 96.8 Actuated g/C Ratio 0.13 0.13 0.81 0.81 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 224 201 2855 2855
Satd. Flow (perm)1770158335393539Volume (vph)1358791001080Peak-hour factor, PHF0.920.920.920.920.920.92Adj. Flow (vph)1479860001174Lane Group Flow (vph)1479860001174Turn TypePermPermProtected Phases826Permitted Phases8266Permitted Phases826Actuated Green, G (s)14.214.295.895.8Effective Green, g (s)15.215.296.896.8Actuated g/C Ratio0.130.130.810.81Clearance Time (s)5.05.05.05.0Vehicle Extension (s)3.03.03.03.0Lane Grp Cap (vph)22420128552855
Volume (vph)1358791001080Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph)1479860001174Lane Group Flow (vph)1479860001174Turn TypePermPermProtected Phases826Permitted Phases8266Permitted Phases844295.895.8Effective Green, G (s)14.214.295.896.8Actuated g/C Ratio0.130.130.810.81Clearance Time (s)5.05.05.05.0Vehicle Extension (s)3.03.03.03.0Lane Grp Cap (vph)22420128552855
Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 147 9 860 0 0 1174 Lane Group Flow (vph) 147 9 860 0 0 1174 Lane Group Flow (vph) 147 9 860 0 0 1174 Turn Type Perm Perm Permitted Phases 8 2 6 Protected Phases 8 2 6 6 6 Permitted Phases 8 2 6 6 Actuated Green, G (s) 14.2 14.2 95.8 95.8 Effective Green, g (s) 15.2 15.2 96.8 96.8 Actuated g/C Ratio 0.13 0.13 0.81 0.81 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 224 201 2855 2855
Adj. Flow (vph) 147 9 860 0 0 1174 Lane Group Flow (vph) 147 9 860 0 0 1174 Turn Type Perm Perm Permitted Phases 8 2 6 Permitted Phases 8 2 6 6 Actuated Green, G (s) 14.2 14.2 95.8 95.8 Effective Green, g (s) 15.2 15.2 96.8 96.8 Actuated g/C Ratio 0.13 0.13 0.81 0.81 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 224 201 2855 2855
Lane Group Flow (vph) 147 9 860 0 0 1174 Turn Type Perm Protected Phases 8 2 6 Permitted Phases 8 2 6 Actuated Green, G (s) 14.2 14.2 95.8 95.8 Effective Green, g (s) 15.2 15.2 96.8 96.8 Actuated g/C Ratio 0.13 0.13 0.81 0.81 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 224 201 2855 2855
Turn Type Perm Protected Phases 8 2 6 Permitted Phases 8 4
Protected Phases 8 2 6 Permitted Phases 8 4 4 4 4 9 5 8 9 <t< td=""></t<>
Permitted Phases 8 Actuated Green, G (s) 14.2 14.2 95.8 95.8 Effective Green, g (s) 15.2 15.2 96.8 96.8 Actuated g/C Ratio 0.13 0.13 0.81 0.81 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 224 201 2855 2855
Actuated Green, G (s) 14.2 14.2 95.8 95.8 Effective Green, g (s) 15.2 15.2 96.8 96.8 Actuated g/C Ratio 0.13 0.13 0.81 0.81 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 224 201 2855 2855
Effective Green, g (s) 15.2 15.2 96.8 96.8 Actuated g/C Ratio 0.13 0.13 0.81 0.81 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 224 201 2855 2855
Actuated g/C Ratio 0.13 0.13 0.81 0.81 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 224 201 2855 2855
Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 224 201 2855 2855 2855
Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 224 201 2855 2855
Lane Grp Cap (vph) 224 201 2855 2855
v/s Ratio Prot c0.08 0.24 c0.33
v/s Ratio Perm 0.01
v/c Ratio 0.66 0.04 0.30 0.41
Uniform Delay, d1 49.9 46.0 3.0 3.4
Progression Factor 1.00 1.00 0.67 0.80
Incremental Delay, d2 6.8 0.1 0.3 0.3
Delay (s) 56.7 46.1 2.2 3.0
Level of Service E D A A
Approach Delay (s) 56.1 2.2 3.0
Approach LOS E A A
Intersection Summary
HCM Average Control Delay 6.5 HCM Level of Service A
HCM Volume to Capacity ratio 0.44
Actuated Cycle Length (s) 120.0 Sum of lost time (s) 8.0
Intersection Capacity Utilization 47.2% ICU Level of Service A

Critical Lane Group С

HCM Unsignalized Intersection Capacity Analysis 4: Sterrett & Madison Avenue

5/6/2008

	٠		~	~	-		•	ŧ	*	1	Ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations												
Sign Control		Stop			Stop			Fteta			F	
Grade		0%			0%			0%			0%	
Volume (veh/h)	2	0	5	0	0	0	0	678	65	20	1041	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	2	0	5	0	0	0	0	737	71	22	1132	2
Pedestrians								1				
Lane Width (ft)								12.0				
Walking Speed (ft/s)								4.0				
Percent Blockage								0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)											565	
pX, platoon unblocked	0.92	0.92	0.92	0.92	0.92		0.92					
vC, conflicting volume	1545	1984	568	1388	1949	404	1134			808		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1505	1982	445	1335	1945	404	1059			808		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	97	100	99	100	100	100	100			97		
cM capacity (veh/h)	75	54	516	100	57	596	602			813		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	8	0	491	316	588	568						
Volume Left	2	0	0	0	22	0						
Volume Right	5	0	0	71	0	2						
cSH	193	1700	1700	1700	813	1700						
Volume to Capacity	0.04	0.00	0.29	0.19	0.03	0.33						
Queue Length (ft)	3	0	0	0	2	0						
Control Delay (s)	24.4	0.0	0.0	0.0	0.7	0.0						
Lane LOS	С	А			А							
Approach Delay (s)	24.4	0.0	0.0		0.4							
Approach LOS	С	А										
Intersection Summary												
Average Delay			0.3									
Intersection Capacity Uti	ilization	1	48.3%	10	CU Leve	el of Ser	vice		А			

HCM Signalized Intersection Capacity Analysis 6: 20th Street & Madison Avenue

Movement EBL EBT EBR WBL WBT WBR NBT NBR SBL SBT SBL Lane Configurations
Lane Configurations Ideal Flow (vphpl) 1900
Ideal Flow (vphpl) 1900
Total Lost time (s) 4.0 4.0 4.0 4.0 4.0 Long Util Factor 1.00 1.00 1.00 0.05
Lang Util Easter 1.00 1.00 1.00 1.00 0.05
Lane Oui, Factor 1.00 1.00 1.00 1.00 1.00 0.95
Frt 0.97 1.00 0.86 1.00 0.85 0.99
Flt Protected 0.97 0.95 1.00 1.00 0.99
Satd. Flow (prot) 1767 1770 1600 1862 1583 3482
Flt Permitted 0.86 0.73 1.00 1.00 0.72
Satd. Flow (perm) 1553 1358 1600 1855 1583 2520
Volume (vph) 22 10 7 525 6 101 4 491 330 68 525 4
Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Adj. Flow (vph) 24 11 8 571 7 110 4 534 359 74 571 5
Lane Group Flow (vph) 0 43 0 571 117 0 0 538 359 0 695
Turn Type Perm Perm Perm Perm Perm
Protected Phases 4 8 2 6
Permitted Phases 4 8 2 2 6
Actuated Green, G (s) 52.8 52.8 52.8 57.2 57.2 57.2
Effective Green, g (s) 53.8 53.8 53.8 58.2 58.2 58.2
Actuated g/C Ratio 0.45 0.45 0.45 0.49 0.49 0.49
Clearance Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Vehicle Extension (s) 3.0
Lane Grp Cap (vph) 696 609 717 900 768 1222
v/s Ratio Prot 0.07
v/s Ratio Perm 0.03 c0.42 c0.29 0.23 0.28
v/c Ratio 0.06 0.94 0.16 0.60 0.47 0.57
Uniform Delay, d1 18.8 31.5 19.7 22.4 20.6 22.0
Progression Factor 1.00 1.00 1.00 0.51 1.13 0.77
Incremental Delay, d2 0.0 22.1 0.1 2.8 2.0 1.8
Delay (s) 18.8 53.6 19.8 14.3 25.3 18.7
Level of Service B D B B C B
Approach Delay (s) 18.8 47.8 18.7 18.7
Approach LOS B D B B
Intersection Summary
HCM Average Control Delay 27.3 HCM Level of Service C
HCM Volume to Capacity ratio 0.76
Actuated Cycle Length (s) 120.0 Sum of lost time (s) 8.0
Intersection Capacity Utilization 96.1% ICU Level of Service E
c Critical Lane Group

HCM Signalized Intersection Capacity Analysis 9: 19th Street & Madison Avenue

	≯	\mathbf{i}	•	†	Ţ	1						
Movement	EBL	EBR	NBL	NB ' T	SBT	SBR						
Lane Configurations												
Ideal Flow (vphpl)	1900	190 <mark>0</mark>	1900	190💠	19 <mark>00</mark>	1900						
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0							
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95							
Frt	1.00	0.85	1.00	1.00	0.95							
Flt Protected	0.95	1.00	0.95	1.00	1.00							
Satd. Flow (prot)	1770	1583	1770	1863	3374							
Flt Permitted	0.95	1.00	0.30	1.00	1.00							
Satd. Flow (perm)	1770	1583	559	1863	3374							
Volume (vph)	285	281	186	470	485	220						
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92						
Adj. Flow (vph)	310	305	202	511	527	239						
Lane Group Flow (vph)	310	305	202	511	766	0						
Turn Type		Perm	pm+pt									
Protected Phases	4		5	2	6							
Permitted Phases		4	2									
Actuated Green, G (s)	25.7	25.7	84.3	84.3	73.2							
Effective Green, g (s)	26.7	26.7	85.3	85.3	74.2							
Actuated g/C Ratio	0.22	0.22	0.71	0.71	0.62							
Clearance Time (s)	5.0	5.0	4.0	5.0	5.0							
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0							
Lane Grp Cap (vph)	394	352	469	1324	2086							
v/s Ratio Prot	0.18		0.03	c0.27	0.23							
v/s Ratio Perm		c0.19	c0.28									
v/c Ratio	0.79	0.87	0.43	0.39	0.37							
Uniform Delay, d1	44.0	44.9	6.7	6.9	11.3							
Progression Factor	1.00	1.00	1.86	0.19	1.00							
Incremental Delay, d2	10.0	19.5	0.6	0.8	0.5							
Delay (s)	53.9	64.4	13.0	2.1	11.8							
Level of Service	D	E	В	А	В							
Approach Delay (s)	59.1			5.2	11.8							
Approach LOS	Е			А	В							
Intersection Summary												
HCM Average Control D	elay		23.4	Н	ICM Lev	vel of Service		С				
HCM Volume to Capacit	y ratio		0.53									
Actuated Cycle Length (s)		120.0	S	um of lo	ost time (s)		8.0				
Intersection Capacity Utilization			60.6%	10	CU Leve	of Service		В				
c Critical Lane Group												
	≯	_		~	6	1	+		•	+	*	_
---------------------------	----------	-------	-------	------	----------	-----------	--------	------	-------	-------	------	----------
Movement	ĒBL	EBT	EBR	EBR2	WBL2	WBL	WBT	WBR	NBL	NB	NBR	SBL2
Lane Configurations												
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	19🛺	1900	1900	1900	1900	1900
Total Lost time (s)		4.0					4.0			4.0		
Lane Util. Factor		1.00					1.00			*0.88		
Frt		0.95					1.00			1.00		
Flt Protected		0.98					0.95			0.99		
Satd. Flow (prot)		1735					1774			3248		
Flt Permitted		0.98					0.66			0.99		
Satd. Flow (perm)		1735					1221			3248		
Volume (vph)	29	28	19	19	56	56	2	1	65	356	5	27
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	32	30	21	21	61	61	2	1	71	387	5	29
Lane Group Flow (vph)	0	104	0	0	0	0	125	0	0	463	0	0
Turn Type	Split				Split	Perm		С	ustom			Perm
Protected Phases	4	4			8		8		10	10		
Permitted Phases						8			10	10		6
Actuated Green, G (s)		11.7					14.7			18.6		
Effective Green, g (s)		12.7					15.7			19.6		
Actuated g/C Ratio		0.11					0.13			0.16		
Clearance Time (s)		5.0					5.0			5.0		
Vehicle Extension (s)		3.0					3.0			3.0		
Lane Grp Cap (vph)		184					160			531		
v/s Ratio Prot		c0.06								c0.14		
v/s Ratio Perm							c0.10					
v/c Ratio		0.57					0.78			0.87		
Uniform Delay, d1		51.0					50.5			49.0		
Progression Factor		1.00					1.00			1.00		
Incremental Delay, d2		3.9					21.5			14.6		
Delay (s)		55.0					72.0			63.6		
Level of Service		D					E			E		
Approach Delay (s)		55.0					72.0			63.6		
Approach LOS		D					E			E		
Intersection Summary												
HCM Average Control D	elay		35.7	ŀ	ICM Le	vel of Se	ervice		D			
HCM Volume to Capacity	y ratio		0.74									
Actuated Cycle Length (s	s)		120.0	Ę	Sum of I	ost time	(s)		16.0			
Intersection Capacity Uti	lization		86.8%	I	CU Leve	el of Ser	vice		D			
c Critical Lane Group												

5/6/2008

	L	Ţ	1	*	•
Movement	SBL	SBT	SBR	NWL	NWŔ
Lane Configurations					
Ideal Flow (vphpl)	190	190 <mark>1</mark> 3	1900	190	19 00
Total Lost time (s)	4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00		1.00	*0.88
Frt	1.00	0.99		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00
Satd. Flow (prot)	1770	1845		1770	2787
Flt Permitted	0.96	1.00		0.22	1.00
Satd. Flow (perm)	1797	1845		409	2787
Volume (vph)	<u>524</u>	489	34	65	362
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	570	532	37	71	393
Lane Group Flow (vph)	599	569	0	71	393
Turn Type	Perm			c	ustom
Protected Phases		6			2
Permitted Phases	6			2	2
Actuated Green, G (s)	55.0	55.0		55.0	55.0
Effective Green, g (s)	56.0	56.0		56.0	56.0
Actuated g/C Ratio	0.47	0.47		0.47	0.47
Clearance Time (s)	5.0	5.0		5.0	5.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	839	861		191	1301
v/s Ratio Prot		0.31		-	0.14
v/s Ratio Perm	c0.33			0.17	
v/c Ratio	0.71	0.66		0.37	0.30
Uniform Delav. d1	25.6	24.7		20.6	19.9
Progression Factor	0.89	0.89		1.00	1.00
Incremental Delay. d2	2.8	1.8		5.5	0.6
Delay (s)	25.5	23.8		26.1	20.5
Level of Service	С	С		С	С
Approach Delay (s)	-	24.7		21.3	-
Approach LOS		С		С	
		-		-	
intersection Summary					

HCM Unsignalized Intersection Capacity Analysis 2: Levassor Avenue & Madison Avenue

	1		+	*		1												
Movement	WBL	WBR	NBT	NBR	SBL	SBT												
Lane Configurations																		
Sign Control	Stop		Fre		ሻ	Fre🔶												
Grade	0%		0%			0%												
Volume (veh/h)	7	8	1834	0	4	491												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92												
Hourly flow rate (veh/h)	8	9	1993	0	4	534												
Pedestrians																		
Lane Width (ft)																		
Walking Speed (ft/s)																		
Percent Blockage																		
Right turn flare (veh)																		
Median type	None																	
Median storage veh)																		
Upstream signal (ft)			200															
pX, platoon unblocked																		
vC, conflicting volume	2536	1993			1993													
vC1, stage 1 conf vol																		
vC2, stage 2 conf vol																		
vCu, unblocked vol	2536	1993			1993													
tC, single (s)	6.4	6.2			4.1													
tC, 2 stage (s)																		
tF (s)	3.5	3.3			2.2													
p0 queue free %	74	89			98													
cM capacity (veh/h)	30	76			288													
Direction, Lane #	WB 1	NB 1	SB 1	SB 2														
Volume Total	16	1993	4	534														
Volume Left	8	0	4	0														
Volume Right	9	0	0	0														
cSH	44	1700	288	1700														
Volume to Capacity	0.37	1.17	0.02	0.31														
Queue Length (ft)	32	0	1	0														
Control Delay (s)	129.3	0.0	17.7	0.0														
Lane LOS	F		С															
Approach Delay (s)	129.3	0.0	0.1															
Approach LOS	F																	
Intersection Summarv																		
Average Delay			0.9															
Intersection Capacity Ut	tilization	1	14.9%	10	CU Leve	l of Serv	/ice	e	e	e G	e G	e G	e G	e G	e G	e G	e G	e G
		•									-	-		-	-	_	-	-

5/6/2008

	-	•	†	-	· 🖌	Ţ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations								
Ideal Flow (vphpl)	1900	190 <mark>0</mark>	190🔶	1900	1900	190🔶		
Total Lost time (s)	4.0	4.0	4.0			4.0		
Lane Util. Factor	1.00	1.00	1.00			1.00		
Frt	1.00	0.85	1.00			1.00		
Flt Protected	0.95	1.00	1.00			1.00		
Satd. Flow (prot)	1770	1583	1863			1863		
Flt Permitted	0.95	1.00	1.00			1.00		
Satd. Flow (perm)	1770	1583	1863			1863		
Volume (vph)	40	20	1300	0	0	615		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	43	22	1413	0	0	668		
Lane Group Flow (vph)	43	22	1413	0	0	668		
Turn Type		Perm						
Protected Phases	8		2			6		
Permitted Phases		8						
Actuated Green, G (s)	7.8	7.8	132.2			132.2		
Effective Green, g (s)	8.8	8.8	133.2			133.2		
Actuated g/C Ratio	0.06	0.06	0.89			0.89		
Clearance Time (s)	5.0	5.0	5.0			5.0		
Vehicle Extension (s)	3.0	3.0	3.0			3.0		
Lane Grp Cap (vph)	104	93	1654			1654		
v/s Ratio Prot	c0.02		c0.76			0.36		
v/s Ratio Perm		0.01						
v/c Ratio	0.41	0.24	0.85			0.40		
Uniform Delay, d1	68.1	67.4	3.9			1.5		
Progression Factor	1.00	1.00	0.74			0.61		
Incremental Delay, d2	2.7	1.3	0.6			0.7		
Delay (s)	70.8	68.7	3.5			1.6		
Level of Service	E	Е	А			А		
Approach Delay (s)	70.1		3.5			1.6		
Approach LOS	E		А			А		
Intersection Summary								
HCM Average Control D	elay		4.9	Н	ICM Lev	el of Servi	ce A	
HCM Volume to Capacit	ty ratio		0.83					
Actuated Cycle Length (s)		150.0	S	sum of lo	ost time (s)	8.0	
Intersection Capacity Ut	ilization		84.4%	IC	CU Leve	of Service	e D	
c Critical Lane Group								

HCM Unsignalized Intersection Capacity Analysis 4: Sterrett & Madison Avenue

5/6/200	8
---------	---

	٠		~	~	-		•	ŧ	*	5	T	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NB	NBR	SBL	SBT	SBR
Lane Configurations												
Sign Control		Stop			Stop			Fre		ሻ	Fre	
Grade		0%			0%			0%			0%	
Volume (veh/h)	2	0	5	0	0	0	0	1245	170	3	395	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	2	0	5	0	0	0	0	1353	185	3	429	3
Pedestrians								1				
Lane Width (ft)								12.0				
Walking Speed (ft/s)								4.0				
Percent Blockage								0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)											565	
pX, platoon unblocked												
vC, conflicting volume	1883	1976	432	1888	1885	1446	433			1538		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1883	1976	432	1888	1885	1446	433			1538		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	96	100	99	100	100	100	100			99		
cM capacity (veh/h)	54	62	623	53	70	162	1127			432		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1	SB 2							
Volume Total	8	0	1538	3	433							
Volume Left	2	0	0	3	0							
Volume Right	5	0	185	0	3							
cSH	155	1700	1700	432	1700							
Volume to Capacity	0.05	0.00	0.90	0.01	0.25							
Queue Length (ft)	4	0	0	1	0							
Control Delay (s)	29.5	0.0	0.0	13.4	0.0							
Lane LOS	D	А		В								
Approach Delay (s)	29.5	0.0	0.0	0.1								
Approach LOS	D	А										
Intersection Summary												
Average Delay			0.1									
Intersection Capacity Uti	lization	1	92.4%	10	CU Leve	el of Ser	vice		E			

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SE Lane Configurations Ideal Flow (vphpl) 1900	Iovement ane Configurations
Lane Configurations Ideal Flow (vphpl) 1900	ane Configurations
Ideal Flow (vphpl) 1900 <td></td>	
Total Lost time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	deal Flow (vphpl)
	otal Lost time (s)
Lane Util. Factor 1.00 <td>ane Util. Factor</td>	ane Util. Factor
Frt 0.97 1.00 0.88 1.00 1.00 0.85 1.00 0.99	rt
Flt Protected 0.98 0.95 1.00 0.95 1.00 0.95 1.00	It Protected
Satd. Flow (prot) 1764 1770 1640 1770 1863 1583 1770 1849	atd. Flow (prot)
Flt Permitted 0.86 0.74 1.00 0.56 1.00 1.00 0.29 1.00	It Permitted
Satd. Flow (perm) 1552 1380 1640 1045 1863 1583 533 1849	atd. Flow (perm)
Volume (vph) 22 12 9 304 17 64 39 661 589 47 244	'olume (vph)
Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	eak-hour factor, PHF
Adj. Flow (vph) 24 13 10 330 18 70 42 718 640 51 265	dj. Flow (vph)
Lane Group Flow (vph) 0 47 0 330 88 0 42 718 640 51 279	ane Group Flow (vph)
Turn Type Perm Perm Perm Perm Perm	urn Type
Protected Phases 4 8 2 6	rotected Phases
Permitted Phases 4 8 2 2 6	ermitted Phases
Actuated Green, G (s) 38.7 38.7 38.7 101.3 101.3 101.3 101.3	ctuated Green, G (s)
Effective Green, g (s) 39.7 39.7 102.3 102.3 102.3 102.3 102.3	ffective Green, g (s)
Actuated g/C Ratio 0.26 0.26 0.26 0.68 0.68 0.68 0.68 0.68	ctuated g/C Ratio
Clearance Time (s) 5.0	clearance Time (s)
Vehicle Extension (s) 3.0	ehicle Extension (s)
Lane Grp Cap (vph) 411 365 434 713 1271 1080 364 1261	ane Grp Cap (vph)
v/s Ratio Prot 0.05 0.39 0.15	/s Ratio Prot
v/s Ratio Perm 0.03 c0.24 0.04 c0.40 0.10	/s Ratio Perm
v/c Ratio 0.11 0.90 0.20 0.06 0.56 0.59 0.14 0.22	/c Ratio
Uniform Delay, d1 41.8 53.3 42.9 7.9 12.3 12.7 8.4 8.9	Iniform Delay, d1
Progression Factor 1.00 1.00 1.00 0.68 0.63 0.44 0.97 0.98	Progression Factor
Incremental Delay, d2 0.1 24.8 0.2 0.1 1.0 1.3 0.8 0.4	ncremental Delay, d2
Delay (s) 41.9 78.1 43.1 5.5 8.8 6.9 9.0 9.1	elay (s)
Level of Service D E D A A A A A	evel of Service
Approach Delay (s) 41.9 70.7 7.8 9.1	pproach Delay (s)
Approach LOS D E A A	pproach LOS
Intersection Summary	ntersection Summary
HCM Average Control Delay 20.7 HCM Level of Service C	ICM Average Control E
HCM Volume to Capacity ratio 0.68	ICM Volume to Capaci
Actuated Cycle Length (s) 150.0 Sum of lost time (s) 8.0	ctuated Cycle Length
Intersection Capacity Utilization 69.5% ICU Level of Service B	ntersection Capacity U
c Critical Lane Group	Critical Lane Group

	≯	\mathbf{i}	•	†	T	1		
Movement	EBL	EBR	NBL	NB	SBT	SBR		
Lane Configurations								
Ideal Flow (vphpl)	1900	190	1900	190🔶	190 <mark>1</mark> 3	1900		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	0.93			
Flt Protected	0.95	1.00	0.95	1.00	1.00			
Satd. Flow (prot)	1770	1583	1770	1863	1738			
Flt Permitted	0.95	1.00	0.59	1.00	1.00			
Satd. Flow (perm)	1770	1583	1100	1863	1738			
Volume (vph)	117	99	192	448	106	104		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	127	108	209	487	115	113		
Lane Group Flow (vph)	127	108	209	487	228	0		
Turn Type		Perm	pm+pt					
Protected Phases	4		5	2	6			
Permitted Phases		4	2					
Actuated Green, G (s)	15.2	15.2	124.8	124.8	114.3			
Effective Green, g (s)	16.2	16.2	125.8	125.8	115.3			
Actuated g/C Ratio	0.11	0.11	0.84	0.84	0.77			
Clearance Time (s)	5.0	5.0	4.0	5.0	5.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	191	171	952	1562	1336			
v/s Ratio Prot	c0.07		0.01	c0.26	0.13			
v/s Ratio Perm		0.07	0.17					
v/c Ratio	0.66	0.63	0.22	0.31	0.17			
Uniform Delay, d1	64.3	64.0	2.3	2.6	4.6			
Progression Factor	1.00	1.00	0.14	0.15	1.00			
Incremental Delay, d2	8.4	7.4	0.1	0.5	0.3			
Delay (s)	72.7	71.4	0.4	0.8	4.9			
Level of Service	E	E	А	А	А			
Approach Delay (s)	72.1			0.7	4.9			
Approach LOS	E			А	А			
Intersection Summary								
HCM Average Control D	Delay		16.0	ŀ	ICM Lev	vel of Service	В	
HCM Volume to Capacit	ty ratio		0.35					
Actuated Cycle Length ((S)		150.0	S	Sum of Io	ost time (s)	8.0	
Intersection Capacity Ut	ilization		41.6%	I	CU Leve	el of Service	А	
c Critical Lane Group								

Movement

Lane Configurations												
Ideal Flow (vphpl)	1900	19🛺	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0					4.0			4.0		
Lane Util. Factor		1.00					1.00			*0.88		
Frt		0.93					0.99			1.00		
Flt Protected		0.98					0.96			1.00		
Satd. Flow (prot)		1693					1774			1632		
Flt Permitted		0.98					0.70			1.00		
Satd. Flow (perm)		1693					1297			1632		
Volume (vph)	48	0	13	37	5	77	15	8	48	616	5	27
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	52	0	14	40	5	84	16	9	52	670	5	29
Lane Group Flow (vph)	0	106	0	0	0	0	114	0	0	727	0	C
Turn Type	Split				Split	Perm		C	ustom			Perm
Protected Phases	4	4			8		8		10	10		
Permitted Phases						8			10	10		6
Actuated Green, G (s)		12.7					15.1			41.0		
Effective Green, g (s)		13.7					16.1			42.0		
Actuated g/C Ratio		0.09					0.11			0.28		
Clearance Time (s)		5.0					5.0			5.0		
Vehicle Extension (s)		3.0					3.0			3.0		
Lane Grp Cap (vph)		155					139			457		
v/s Ratio Prot		c0.06								c0.45		
v/s Ratio Perm							c0.09					
v/c Ratio		0.68					0.82			1.59		
Uniform Delay, d1		66.1					65.5			54.0		
Progression Factor		1.00					1.00			1.00		
Incremental Delay, d2		11.8					30.5			276.1		
Delay (s)		77.8					96.1			330.1		
Level of Service		Е					F			F		
Approach Delay (s)		77.8					96.1			330.1		
Approach LOS		E					F			F		
Intersection Summary												
HCM Average Control De	elay		242.7	H	ICM Lev	vel of Se	ervice		F			
HCM Volume to Capacity	y ratio		1.38									
Actuated Cycle Length (s	s)		150.0	S	Sum of le	ost time	(s)		16.0			
Intersection Capacity Uti	lization	1	35.8%	10	CU Leve	el of Ser	vice		Н			
c Critical Lane Group												

EBL EBT EBR EBR2 WBL2 WBL WBT WBR NBL NBT NBR SBL2

	L	Ţ	1	*	•
Movement	SBL	SBT	SBR	NWL	NWŔ
Lane Configurations					
Ideal Flow (vphpl)	190	190 <mark>1</mark> 3	1900	190	190
Total Lost time (s)	4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00		1.00	*0.88
Frt	1.00	0.99		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00
Satd. Flow (prot)	1770	1843		1770	1393
Flt Permitted	0.31	1.00		0.46	1.00
Satd. Flow (perm)	576	1843		858	1393
Volume (vph)	241	161	12	48	816
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	262	175	13	52	887
Lane Group Flow (vph)	291	188	0	52	887
Turn Type	Perm			C	custom
Protected Phases		6			2
Permitted Phases	6			2	2
Actuated Green, G (s)	61.2	61.2		61.2	61.2
Effective Green, a (s)	62.2	62.2		62.2	62.2
Actuated g/C Ratio	0.41	0.41		0.41	0.41
Clearance Time (s)	5.0	5.0		5.0	5.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	239	764		356	578
v/s Ratio Prot		0.10			c0.64
v/s Ratio Perm	0.51	00		0.06	20.01
v/c Ratio	1.22	0.25		0.15	1.53
Uniform Delay, d1	43.9	28.6		27.4	43.9
Progression Factor	0.83	0.98		1.00	1.00
Incremental Delay d2	128.9	0.2		0.9	249.2
Delay (s)	165.5	28.3		28.2	293.1
Level of Service	- 55.5 F	C		C	F
Approach Delay (s)		111.6		278.4	•
Approach LOS		F		F	
Intersection Summary					

HCM Unsignalized Intersection Capacity Analysis 2: Levassor Avenue & Madison Avenue

	<	•	Ť	-	×	Ļ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT		 	
Lane Configurations									
Sign Control	Stop		Fre		- ሽ	Fre🕈			
Grade	0%		0%			0%			
Volume (veh/h)	14	8	927	0	2	1229			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (veh/h)	15	9	1008	0	2	1336			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None								
Median storage veh)									
Upstream signal (ft)			200						
pX, platoon unblocked									
vC, conflicting volume	2348	1008			1008				
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	2348	1008			1008				
tC, single (s)	6.4	6.2			4.1				
tC, 2 stage (s)									
tF (s)	3.5	3.3			2.2				
p0 queue free %	62	97			100				
cM capacity (veh/h)	40	292			688				
Direction Lane #	WB 1	NB 1	SB 1	SB 2					
Volume Total	24	1008	2	1336					
Volume Left	15	0	2	0					
Volume Right	.0	0	0	0					
cSH	58	1700	688	1700					
Volume to Capacity	0 41	0.59	0.00	0.79					
Queue Length (ft)	39	0.00	0.00	0.70					
Control Delay (s)	106.0	0.0	10.3	0.0					
Lane LOS	- 00.0	0.0	R	0.0					
Approach Delay (s)	106.0	0.0	0.0						
Approach LOS	- 55.0 F	0.0	0.0						
Interpretion Summers									
Intersection Summary									
Average Delay			1.1		2111				
Intersection Capacity Ut	tilization		80.3%	IC	JU Leve	el of Servi	ce		ט

	1	•	+	*		1		
Movement	WBL	WBR	NB	NBR	SBL	SBT		
Lane Configurations								
Ideal Flow (vphpl)	1900	190 <mark>0</mark>	190🔶	1900	1900	190💠		
Total Lost time (s)	4.0	4.0	4.0			4.0		
Lane Util. Factor	1.00	1.00	1.00			1.00		
Frt	1.00	0.85	1.00			1.00		
Flt Protected	0.95	1.00	1.00			1.00		
Satd. Flow (prot)	1770	1583	1863			1863		
Flt Permitted	0.95	1.00	1.00			1.00		
Satd. Flow (perm)	1770	1583	1863			1863		
Volume (vph)	135	8	791	0	0	1080		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	147	9	860	0	0	1174		
Lane Group Flow (vph)	147	9	860	0	0	1174		
Turn Type		Perm						
Protected Phases	8		2			6		
Permitted Phases		8						
Actuated Green, G (s)	16.1	16.1	113.9			113.9		
Effective Green, g (s)	17.1	17.1	114.9			114.9		
Actuated g/C Ratio	0.12	0.12	0.82			0.82		
Clearance Time (s)	5.0	5.0	5.0			5.0		
Vehicle Extension (s)	3.0	3.0	3.0			3.0		
Lane Grp Cap (vph)	216	193	1529			1529		
v/s Ratio Prot	c0.08		0.46			c0.63		
v/s Ratio Perm		0.01						
v/c Ratio	0.68	0.05	0.56			0.77		
Uniform Delay, d1	58.8	54.3	4.2			6.1		
Progression Factor	1.00	1.00	0.64			0.66		
Incremental Delay, d2	8.5	0.1	1.3			2.6		
Delay (s)	67.3	54.4	4.0			6.6		
Level of Service	E	D	А			А		
Approach Delay (s)	66.6		4.0			6.6		
Approach LOS	E		А			А		
Intersection Summary								
HCM Average Control D	elay		9.8	Н	ICM Lev	vel of Servio	ce A	
HCM Volume to Capacit	y ratio		0.76					
Actuated Cycle Length (s)		140.0	S	um of lo	ost time (s)	8.0	
Intersection Capacity Ut	ilization		76.6%	IC	CU Leve	el of Service	e C	
c Critical Lane Group								

HCM Unsignalized Intersection Capacity Analysis 4: Sterrett & Madison Avenue

5/6/2008

	٦	-	\mathbf{r}	•	+	•	•	Ť	*	1	Ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations												
Sign Control		Stop			Stop			Fre			Fre	
Grade		0%			0%			0%			0%	
Volume (veh/h)	2	0	5	0	0	0	0	678	65	20	1041	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	2	0	5	0	0	0	0	737	71	22	1132	2
Pedestrians								1				
Lane Width (ft)								12.0				
Walking Speed (ft/s)								4.0				
Percent Blockage								0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)											565	
pX, platoon unblocked	0.21	0.21	0.21	0.21	0.21		0.21					
vC, conflicting volume	1948	1984	1134	1954	1949	772	1134			808		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	5427	5591	1624	5452	5432	772	1624			808		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	100	80	100	100	100	100			97		
cM capacity (veh/h)	0	0	27	0	0	399	86			818		
Direction Lane #	ER 1	W/R 1	NR 1	SR 1	SB 2							
Values Total		001		001	1124							
	8	0	808	22	1134							
Volume Leit	2	0	74	22	0							
	5	0	/1	0	4700							
CSH	0	1700	1700	818	1700							
Volume to Capacity	87.23	0.00	0.48	0.03	0.67							
Queue Length (ft)	Err	0	0	2	0							
Control Delay (s)	Err	0.0	0.0	9.5	0.0							
Lane LOS	F	A		A								
Approach Delay (s)	Err	0.0	0.0	0.2								
Approach LOS	F	A										
Intersection Summary												
Average Delay			38.7									
Intersection Capacity Ut	tilization	1	69.7%	10	CU Leve	el of Ser	vice		В			

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBT SBL Lane Configurations Ideal Flow (vphpl) 1900	ovement ne Configurations
Lane Configurations Ideal Flow (vphpl) 1900	ne Configurations
Ideal Flow (vphpl) 1900 <td></td>	
Total lost time (s) 40 40 40 40 40 40 40	eal Flow (vphpl)
	tal Lost time (s)
Lane Util. Factor 1.00 <td>ne Util. Factor</td>	ne Util. Factor
Frt 0.97 1.00 0.86 1.00 1.00 0.85 1.00 0.99	t
Flt Protected 0.97 0.95 1.00 0.95 1.00 0.95 1.00	Protected
Satd. Flow (prot) 1767 1770 1600 1770 1863 1583 1770 1840	td. Flow (prot)
Flt Permitted 0.85 0.73 1.00 0.23 1.00 1.00 0.30 1.00	Permitted
Satd. Flow (perm) 1543 1358 1600 425 1863 1583 552 1840	td. Flow (perm)
Volume (vph) 22 10 7 525 6 101 4 491 330 68 525	olume (vph)
Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	ak-hour factor, PHF
Adj. Flow (vph) 24 11 8 571 7 110 4 534 359 74 571	lj. Flow (vph)
Lane Group Flow (vph) 0 43 0 571 117 0 4 534 359 74 621	ne Group Flow (vph)
Turn Type Perm Perm Perm Perm Perm	irn Type
Protected Phases 4 8 2 6	otected Phases
Permitted Phases 4 8 2 2 6	ermitted Phases
Actuated Green, G (s) 60.9 60.9 60.9 69.1 69.1 69.1 69.1 69.1	tuated Green, G (s)
Effective Green, g (s) 61.9 61.9 70.1 70.1 70.1 70.1	fective Green, g (s)
Actuated g/C Ratio 0.44 0.44 0.44 0.50 0.50 0.50 0.50 0.50	tuated g/C Ratio
Clearance Time (s) 5.0	earance Time (s)
Vehicle Extension (s) 3.0	hicle Extension (s)
Lane Grp Cap (vph) 682 600 707 213 933 793 276 921	ne Grp Cap (vph)
v/s Ratio Prot 0.07 0.29 c0.34	s Ratio Prot
v/s Ratio Perm 0.03 c0.42 0.01 0.23 0.13	s Ratio Perm
v/c Ratio 0.06 0.95 0.17 0.02 0.57 0.45 0.27 0.67	c Ratio
Uniform Delay, d1 22.4 37.6 23.5 17.6 24.5 22.6 20.2 26.3	niform Delay, d1
Progression Factor 1.00 1.00 1.00 0.58 0.57 0.83 0.55 0.58	ogression Factor
Incremental Delay, d2 0.0 25.2 0.1 0.1 2.2 1.6 1.8 3.1	cremental Delay, d2
Delay (s) 22.4 62.8 23.6 10.4 16.2 20.3 13.0 18.4	elay (s)
Level of Service C E C B B C B B	vel of Service
Approach Delay (s) 22.4 56.1 17.8 17.8	proach Delay (s)
Approach LOS C E B B	proach LOS
Intersection Summary	ersection Summary
HCM Average Control Delay 29.2 HCM Level of Service C	CM Average Control D
HCM Volume to Capacity ratio 0.80	CM Volume to Capacit
Actuated Cycle Length (s) 140.0 Sum of lost time (s) 8.0	tuated Cycle Length (
Intersection Capacity Utilization 84.7% ICU Level of Service D	ersection Capacity Ut
c Critical Lane Group	Critical Lane Group

	≯	\sim	•		Ţ	1		
Movement	EBL	EBR	NBL	NB	SBT	SBR		
Lane Configurations								
Ideal Flow (vphpl)	1900	190 <mark>0</mark>	1900	190💠	190 <mark>1</mark> 3	1900		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	0.96			
Flt Protected	0.95	1.00	0.95	1.00	1.00			
Satd. Flow (prot)	1770	1583	1770	1863	1784			
Flt Permitted	0.95	1.00	0.21	1.00	1.00			
Satd. Flow (perm)	1770	1583	395	1863	1784			
Volume (vph)	285	281	186	470	485	220		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	310	305	202	511	527	239		
Lane Group Flow (vph)	310	305	202	511	766	0		
Turn Type		Perm	pm+pt					
Protected Phases	4		5	2	6			
Permitted Phases		4	2					
Actuated Green, G (s)	28.7	28.7	102.3	101.3	82.3			
Effective Green, g (s)	29.7	29.7	102.3	102.3	83.3			
Actuated g/C Ratio	0.21	0.21	0.73	0.73	0.60			
Clearance Time (s)	5.0	5.0	4.0	5.0	5.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	375	336	436	1361	1061			
v/s Ratio Prot	0.18		c0.05	0.27	c0.43			
v/s Ratio Perm		c0.19	0.29					
v/c Ratio	0.83	0.91	0.46	0.38	0.72			
Uniform Delay, d1	52.7	53.8	28.8	7.0	20.1			
Progression Factor	1.00	1.00	0.51	0.19	1.00			
Incremental Delay, d2	13.8	26.9	0.7	0.7	4.3			
Delay (s)	66.5	80.7	15.3	2.1	24.4			
Level of Service	Е	F	В	Α	С			
Approach Delay (s)	73.6			5.8	24.4			
Approach LOS	E			А	С			
Intersection Summary								
HCM Average Control D	elay		32.5	H	ICM Lev	el of Service	С	
HCM Volume to Capacit	y ratio		0.71					
Actuated Cycle Length (s)		140.0	S	Sum of Io	ost time (s)	8.0	
Intersection Capacity Uti	ilization		80.7%	10	CU Leve	of Service	D	
c Critical Lane Group								

5/6/2008

	≯			\mathbf{i}	5	1	-	•	•	+	*	
Movement	ĒBL	EBT	EBR	EBR2	WBL2	WBL	WBT	WBR	NBL	NB	NBR	SBL2
Lane Configurations												
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	19🛺	1900	1900	190	190	1900
Total Lost time (s)		4.0					4.0		4.0	4.0	4.0	
Lane Util. Factor		1.00					1.00		1.00	*0.88	1.00	
Frt		0.95					1.00		1.00	1.00	0.85	
Flt Protected		0.98					0.95		0.95	1.00	1.00	
Satd. Flow (prot)		1735					1774		1770	1639	1583	
Flt Permitted		0.98					0.66		0.95	1.00	1.00	
Satd. Flow (perm)		1735					1221		1770	1639	1583	
Volume (vph)	29	28	19	19	56	56	2	1	65	356	5	27
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	32	30	21	21	61	61	2	1	71	387	5	29
Lane Group Flow (vph)	0	104	0	0	0	0	125	0	71	387	5	0
Turn Type	Split				Split	Perm		С	ustom		Perm	Perm
Protected Phases	4	4			8		8		10	10		
Permitted Phases						8			10	10	10	6
Actuated Green, G (s)		12.6					15.5		33.0	33.0	33.0	
Effective Green, g (s)		13.6					16.5		34.0	34.0	34.0	
Actuated g/C Ratio		0.10					0.12		0.24	0.24	0.24	
Clearance Time (s)		5.0					5.0		5.0	5.0	5.0	
Vehicle Extension (s)		3.0					3.0		3.0	3.0	3.0	
Lane Grp Cap (vph)		169					144		430	398	384	
v/s Ratio Prot		c0.06							0.04	c0.24		
v/s Ratio Perm							c0.10				0.00	
v/c Ratio		0.62					0.87		0.17	0.97	0.01	
Uniform Delay, d1		60.7					60.7		41.8	52.5	40.3	
Progression Factor		1.00					1.00		1.00	1.00	1.00	
Incremental Delay, d2		6.5					38.7		0.2	37.6	0.0	
Delay (s)		67.2					99.3		42.0	90.2	40.3	
Level of Service		Е					F		D	F	D	
Approach Delay (s)		67.2					99.3			82.2		
Approach LOS		E					F			F		
Intersection Summary												
HCM Average Control D	elay		52.0	ŀ	HCM Le	vel of Se	ervice		D			
HCM Volume to Capacit	y ratio		0.85									
Actuated Cycle Length (s)		140.0	S	Sum of I	ost time	(s)		16.0			
Intersection Capacity Uti	ilization	1	04.8%	I	CU Leve	el of Ser	vice		F			
c Critical Lane Group												

X		-	•	•
Movement SBL	SBT	SBR	NWL	NWR
Lane Configurations				
Ideal Flow (vphpl) 190	190 <mark>0</mark>	1900	190	190
Total Lost time (s) 4.0	4.0		4.0	4.0
Lane Util. Factor 1.00	1.00		1.00	*0.88
Frt 1.00	0.99		1.00	0.85
Flt Protected 0.95	1.00		0.95	1.00
Satd. Flow (prot) 1770	1845		1770	1393
Flt Permitted 0.91	1.00		0.18	1.00
Satd. Flow (perm) 1702	1845		326	1393
Volume (vph) 524	489	34	65	362
Peak-hour factor, PHF 0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph) 570	532	37	71	393
Lane Group Flow (vph) 599	569	0	71	393
Turn Type Perm			C	ustom
Protected Phases	6			2
Permitted Phases			2	2
Actuated Green, G (s) 58.9	58.9		58.9	58.9
Effective Green, q (s) 59.9	59.9		59.9	59.9
Actuated g/C Ratio 0.43	0.43		0.43	0.43
Clearance Time (s) 5.0	5.0		5.0	5.0
Vehicle Extension (s) 3.0	3.0		3.0	3.0
Lane Grp Cap (vph) 728	789		139	596
v/s Ratio Prot	0.31		100	0.28
v/s Ratio Perm c0.35	0.01		0.22	0.20
v/c Ratio 0.82	0.72		0.51	0.66
Uniform Delay d1 354	33.1		29.3	31.9
Progression Factor 1 01	1 02		1 00	1 00
Incremental Delay d2 5 9	2.6		12.8	5.6
Delay (s) 41 f	36.4		42.0	37.6
Level of Service	D		- <u></u> -	07.0 D
Approach Delay (s)	39.1		38.3	U
Approach LOS	D		D	
	D		5	
Intersection Summary				

HCM Unsignalized Intersection Capacity Analysis 2: Levassor Avenue & Madison Avenue

	<	•	†	-	1	Ţ											
Movement	WBL	WBR	NB ' T	NBR	SBL	SBT		 									
Lane Configurations					-	_											
Sign Control	Stop		Frieta			Fre💠											
Grade	0%		0%			0%											
Volume (veh/h)	7	8	1684	0	4	391											
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92											
Hourly flow rate (veh/h)	8	9	1830	0	4	425											
Pedestrians																	
Lane Width (ft)																	
Walking Speed (ft/s)																	
Percent Blockage																	
Right turn flare (veh)																	
Median type	None																
Median storage veh)																	
Upstream signal (ft)			200														
pX, platoon unblocked																	
vC, conflicting volume	2264	915			1830												
vC1, stage 1 conf vol																	
vC2, stage 2 conf vol																	
vCu, unblocked vol	2264	915			1830												
tC, single (s)	6.8	6.9			4.1												
tC, 2 stage (s)																	
tF (s)	3.5	3.3			2.2												
p0 queue free %	78	97			99												
cM capacity (veh/h)	34	275			330												
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2												
Volume Total	16	1220	610	4	425												
Volume Left	8	0	0	4	0												
Volume Right	9	0	0	0	0												
cSH	64	1700	1700	330	1700												
Volume to Capacity	0.26	0.72	0.36	0.01	0.25												
Queue Length (ft)	22	0	0	1	00												
Control Delay (s)	79.8	0.0	0.0	16.1	0.0												
Lane LOS	. 5.0	510	5.0	C	5.0												
Approach Delay (s)	79.8	0.0		0.2													
Approach LOS	F	510		512													
Intersection Summary																	
Average Delay			0.6														
Intersection Canacity Lit	ilization	1	60.6%	10		of Serv	ice		B	B	B	B	B B	R	R	R R	R
	πΖατισπ		00.070	K			00			J	U	U	U U			U U	U

	•	•	T.		×	.↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations							
Ideal Flow (vphpl)	1900	190 <mark>0</mark>	19 90	1900	1900	190	
Total Lost time (s)	4.0	4.0	4.0			4.0	
Lane Util. Factor	1.00	1.00	0.95			1.00	
Frt	1.00	0.85	1.00			1.00	
Flt Protected	0.95	1.00	1.00			1.00	
Satd. Flow (prot)	1770	1583	3539			1863	
Flt Permitted	0.95	1.00	1.00			1.00	
Satd. Flow (perm)	1770	1583	3539			1863	
Volume (vph)	191	20	750	0	0	364	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	ļ
Adj. Flow (vph)	208	22	815	0	0	396	
Lane Group Flow (vph)	208	22	815	0	0	396	
Turn Type		Perm					
Protected Phases	8		2			6	ļ
Permitted Phases	-	8					
Actuated Green, G (s)	16.6	16.6	83.4			83.4	
Effective Green, g (s)	17.6	17.6	84.4			84.4	
Actuated g/C Ratio	0.16	0.16	0.77			0.77	
Clearance Time (s)	5.0	5.0	5.0			5.0	
Vehicle Extension (s)	3.0	3.0	3.0			3.0	
Lane Grp Cap (vph)	283	253	2715			1429	
v/s Ratio Prot	c0 12	200	c0 23			0.21	ī
v/s Ratio Perm	00.12	0.01	00.20			0.21	
v/c Ratio	0.73	0.09	0.30			0.28	
Uniform Delay d1	44 0	39.4	3.9			3.8	
Progression Factor	1 00	1 00	0.35			0.74	
Incremental Delay d2	9.5	0.1	0.2			0.5	
Delay (s)	53.5	39.5	1.6			3.3	
Level of Service	D	D	Δ			Δ	
Approach Delay (s)	52.2	J	16			33	
Approach LOS	D		A			A	
	U					<i>/</i> \	
Intersection Summary							1
HCM Average Control D	Delay		10.1	F	ICM Lev	vel of Sei	
HCM Volume to Capaci	ty ratio		0.38				

HCM Volume to Capacity ratio	0.38			
Actuated Cycle Length (s)	110.0	Sum of lost time (s)	8.0	
ntersection Capacity Utilization	40.7%	ICU Level of Service	А	
c Critical Lane Group				

HCM Unsignalized Intersection Capacity Analysis 4: Sterrett & Madison Avenue

5/6/2008	
----------	--

	٠		~	~	-		•	ŧ	*	1	Ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations												
Sign Control		Stop			Stop			Fre💠	1	ሻ	Fre	
Grade		0%			0%			0%			0%	
Volume (veh/h)	2	0	5	0	0	0	0	695	571	3	295	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	2	0	5	0	0	0	0	755	621	3	321	3
Pedestrians								1				
Lane Width (ft)								12.0				
Walking Speed (ft/s)								4.0				
Percent Blockage								0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)											565	
pX, platoon unblocked												
vC, conflicting volume	1084	1705	323	1089	1086	755	324			1376		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1084	1705	323	1089	1086	755	324			1376		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	99	100	99	100	100	100	100			99		
cM capacity (veh/h)	193	91	717	190	215	408	1236			498		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	8	0	755	621	3	324						
Volume Left	2	0	0	0	3	0						
Volume Right	5	0	0	621	0	3						
cSH	404	1700	1700	1700	498	1700						
Volume to Capacity	0.02	0.00	0.44	0.37	0.01	0.19						
Queue Length (ft)	1	0	0	0	0	0						
Control Delay (s)	14.1	0.0	0.0	0.0	12.3	0.0						
Lane LOS	В	А			В							
Approach Delay (s)	14.1	0.0	0.0		0.1							
Approach LOS	В	А										
Intersection Summary												
Average Delay			0.1									
Intersection Capacity Uti	ilization		55.1%](CU Leve	el of Ser	vice		А			

	٠	_	~		+		•	+	*		1	1
Movement	ĒBL	EBT	EBR	WBL	WBT	WBR	NBL	NB	NBR	SBL	SBT	SBR
Lane Configurations												
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	190	1900	1900	1900	1900	190 <mark>1</mark> 3	1900
Total Lost time (s)		4.0			4.0	4.0		4.0		4.0	4.0	
Lane Util. Factor		1.00			1.00	1.00		0.95		1.00	1.00	
Frt		0.97			1.00	0.85		0.99		1.00	0.99	
Flt Protected		0.98			0.96	1.00		1.00		0.95	1.00	
Satd. Flow (prot)		1764			1794	1583		3502		1770	1849	
Flt Permitted		0.81			0.80	1.00		0.92		0.34	1.00	
Satd. Flow (perm)		1463			1488	1583		3237		639	1849	
Volume (vph)	22	12	9	54	17	64	39	661	39	47	244	13
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	24	13	10	59	18	70	42	718	42	51	265	14
Lane Group Flow (vph)	0	47	0	0	77	70	0	802	0	51	279	0
Turn Type	Perm			Perm		Perm	Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		9.1			9.1	9.1		90.9		90.9	90.9	
Effective Green, g (s)		10.1			10.1	10.1		91.9		91.9	91.9	
Actuated g/C Ratio		0.09			0.09	0.09		0.84		0.84	0.84	
Clearance Time (s)		5.0			5.0	5.0		5.0		5.0	5.0	
Vehicle Extension (s)		3.0			3.0	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)		134			137	145		2704		534	1545	
v/s Ratio Prot											0.15	
v/s Ratio Perm		0.03			c0.05	0.04		c0.25		0.08		
v/c Ratio		0.35			0.56	0.48		0.30		0.10	0.18	
Uniform Delay, d1		46.9			47.8	47.5		2.0		1.6	1.8	
Progression Factor		1.00			1.00	1.00		0.06		1.06	1.05	
Incremental Delay, d2		1.6			5.2	2.5		0.3		0.4	0.3	
Delay (s)		48.5			53.0	50.0		0.4		2.1	2.1	
Level of Service		D			D	D		А		А	А	
Approach Delay (s)		48.5			51.6			0.4			2.1	
Approach LOS		D			D			А			Α	
Intersection Summary												
HCM Average Control D	elay		8.2	F	ICM Le	vel of Se	ervice		А			
HCM Volume to Capacit	y ratio		0.32									
Actuated Cycle Length (s)		110.0	S	Sum of I	ost time	(s)		8.0			
Intersection Capacity Ut	ilization		50.4%](CU Leve	el of Sei	rvice		А			
c Critical Lane Group												

	≯	\mathbf{i}	•	†	1	1		
Movement	ĒBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations								
Ideal Flow (vphpl)	1900	190	1900	190🔶	190	1900		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	0.93			
Flt Protected	0.95	1.00	0.95	1.00	1.00			
Satd. Flow (prot)	1770	1583	1770	1863	1738			
Flt Permitted	0.95	1.00	0.58	1.00	1.00			
Satd. Flow (perm)	1770	1583	1083	1863	1738			
Volume (vph)	117	99	192	448	106	104		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	127	108	209	487	115	113		
Lane Group Flow (vph)	127	108	209	487	228	0		
Turn Type		Perm	pm+pt					
Protected Phases	4		5	2	6			
Permitted Phases		4	2					
Actuated Green, G (s)	12.6	12.6	87.4	87.4	77.1			
Effective Green, g (s)	13.6	13.6	88.4	88.4	78.1			
Actuated g/C Ratio	0.12	0.12	0.80	0.80	0.71			
Clearance Time (s)	5.0	5.0	4.0	5.0	5.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	219	196	910	1497	1234			
v/s Ratio Prot	c0.07		0.01	c0.26	0.13			
v/s Ratio Perm		0.07	0.17					
v/c Ratio	0.58	0.55	0.23	0.33	0.18			
Uniform Delay, d1	45.5	45.3	2.5	2.9	5.3			
Progression Factor	1.00	1.00	0.29	0.24	1.00			
Incremental Delay, d2	3.7	3.3	0.1	0.6	0.3			
Delay (s)	49.2	48.7	0.9	1.3	5.7			
Level of Service	D	D	А	А	А			
Approach Delay (s)	48.9			1.1	5.7			
Approach LOS	D			А	А			
Intersection Summary								
HCM Average Control D	Delay		11.7	H	ICM Lev	vel of Service	B	
HCM Volume to Capacit	ty ratio		0.36					
Actuated Cycle Length ((S)		110.0	S	sum of lo	ost time (s)	8.0	
Intersection Capacity Ut	ilization		41.6%	IC	CU Leve	el of Service	А	
c Critical Lane Group								

	≯			~	5	-	+	•	•	†	*	1
Movement	EBL	EBT	EBR	EBR2	WBE2	WBL	WBT	WBR	NBL	NB	NBR	SBL2
Lane Configurations												
Ideal Flow (vphpl)	1900	19 01 0	1900	1900	1900	1900	19🛺	1900	1900	1900	1900	1900
Total Lost time (s)		4.0					4.0			4.0		
Lane Util. Factor		1.00					1.00			*0.88		
Frt		0.93					0.99			1.00		
Flt Protected		0.98					0.96			1.00		
Satd. Flow (prot)		1693					1774			3263		
Flt Permitted		0.98					0.70			1.00		
Satd. Flow (perm)		1693					1297			3263		
Volume (vph)	48	0	13	37	5	77	15	8	48	616	5	27
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	52	0	14	40	5	84	16	9	52	670	5	29
Lane Group Flow (vph)	0	106	0	0	0	0	114	0	0	727	0	0
Turn Type	Split				Split	Perm		С	ustom			Perm
Protected Phases	4	4			8		8		10	10		
Permitted Phases						8			10	10		6
Actuated Green, G (s)		10.7					13.3			25.6		
Effective Green, g (s)		11.7					14.3			26.6		
Actuated g/C Ratio		0.11					0.13			0.24		
Clearance Time (s)		5.0					5.0			5.0		
Vehicle Extension (s)		3.0					3.0			3.0		
Lane Grp Cap (vph)		180					169			789		
v/s Ratio Prot		c0.06								c0.22		
v/s Ratio Perm							c0.09					
v/c Ratio		0.59					0.67			0.92		
Uniform Delay, d1		46.9					45.6			40.7		
Progression Factor		1.00					1.00			1.00		
Incremental Delay, d2		4.9					10.2			16.0		
Delay (s)		51.7					55.8			56.7		
Level of Service		D					E			E		
Approach Delay (s)		51.7					55.8			56.7		
Approach LOS		D					E			Е		
Intersection Summary												
HCM Average Control D	elay		42.0	ł	HCM Lev	vel of Se	ervice		D			
HCM Volume to Capacit	y ratio		0.74									
Actuated Cycle Length (s)		110.0	5	Sum of l	ost time	(s)		16.0			
Intersection Capacity Uti	ilization		82.0%	I	CU Leve	el of Sei	vice		D			
c Critical Lane Group												

5/6/2008

	L	Ţ	1	*	•
Movement	SBL	SBT	SBR	NWL	NWŔ
Lane Configurations					
Ideal Flow (vphpl)	190	190 <mark>1</mark> 3	1900	190	1900
Total Lost time (s)	4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00		1.00	*0.88
Frt	1.00	0.99		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00
Satd. Flow (prot)	1770	1843		1770	2787
Flt Permitted	0.79	1.00		0.58	1.00
Satd. Flow (perm)	1480	1843		1090	2787
Volume (vph)	141	161	12	48	666
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	153	175	13	52	724
Lane Group Flow (vph)	182	188	0	52	724
Turn Type	Perm			C	ustom
Protected Phases	-	6			2
Permitted Phases	6			2	2
Actuated Green, G (s)	40.4	40.4		40.4	40.4
Effective Green, g (s)	41.4	41.4		41.4	41.4
Actuated g/C Ratio	0.38	0.38		0.38	0.38
Clearance Time (s)	5.0	5.0		5.0	5.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	557	694		410	1049
v/s Ratio Prot		0.10			c0.26
v/s Ratio Perm	0.12	00		0.05	
v/c Ratio	0.33	0.27		0.13	0.69
Uniform Delay, d1	24.4	23.8		22.5	28.9
Progression Factor	1.11	1.11		1.00	1.00
Incremental Delay d2	0.3	0.2		0.6	3.7
Delay (s)	27.5	26.8		23.1	32.6
Level of Service	C			C	C
Approach Delay (s)	Ŭ	27.1		32.0	Ŭ
Approach LOS		C		C	
		-		-	
Intersection Summary					

HCM Unsignalized Intersection Capacity Analysis 2: Levassor Avenue & Madison Avenue

	1	•		*	1	1												
Movement	WBL	WBR	NBT	NBR	SBĹ	SBT		 										
Lane Configurations																		
Sign Control	Stop		Fteta		ሻ	Fre💠												
Grade	0%		0%			0%												
Volume (veh/h)	14	8	827	0	2	1129												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92												
Hourly flow rate (veh/h)	15	9	899	0	2	1227												
Pedestrians																		
Lane Width (ft)																		
Walking Speed (ft/s)																		
Percent Blockage																		
Right turn flare (veh)																		
Median type	None																	
Median storage veh)																		
Upstream signal (ft)			200															
pX, platoon unblocked																		
vC, conflicting volume	2130	449			899													
vC1, stage 1 conf vol																		
vC2, stage 2 conf vol																		
vCu, unblocked vol	2130	449			899													
tC, single (s)	6.8	6.9			4.1													
tC, 2 stage (s)																		
tF (s)	3.5	3.3			2.2													
p0 queue free %	64	98			100													
cM capacity (veh/h)	42	557			751													
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2													
Volume Total	24	599	300	2	1227													
Volume Left	15	0	0	2	0													
Volume Right	9	0	0	0	0													
cSH	64	1700	1700	751	1700													
Volume to Capacity	0.37	0.35	0.18	0.00	0.72													
Queue Length (ft)	35	0	0	0	0													
Control Delay (s)	91.9	0.0	0.0	9.8	0.0													
Lane LOS	F			А														
Approach Delay (s)	91.9	0.0		0.0														
Approach LOS	F																	
Intersection Summarv																		
Average Delay			1.0															
Intersection Capacity Ut	ilization		74.6%	IC	CU Leve	el of Servio	ce		С	С	С	С	С	С	С	С	С	С
			-															

	~	•	ŧ	*	5	T		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations								
Ideal Flow (vphpl)	1900	190 <mark>0</mark>	19 9 0	1900	1900	190🔶		
Total Lost time (s)	4.0	4.0	4.0			4.0		
Lane Util. Factor	1.00	1.00	0.95			1.00		
Frt	1.00	0.85	1.00			1.00		
Flt Protected	0.95	1.00	1.00			1.00		
Satd. Flow (prot)	1770	1583	3539			1863		
Flt Permitted	0.95	1.00	1.00			1.00		
Satd. Flow (perm)	1770	1583	3539			1863		
Volume (vph)	488	8	<u>591</u>	0	0	638		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	530	9	642	0	0	693		
Lane Group Flow (vph)	530	9	642	0	0	693		
Turn Type		Perm						
Protected Phases	8		2			6		
Permitted Phases		8						
Actuated Green, G (s)	36.0	36.0	64.0			64.0		
Effective Green, g (s)	37.0	37.0	65.0			65.0		
Actuated g/C Ratio	0.34	0.34	0.59			0.59		
Clearance Time (s)	5.0	5.0	5.0			5.0		
Vehicle Extension (s)	3.0	3.0	3.0			3.0		
Lane Grp Cap (vph)	595	532	2091			1101		
v/s Ratio Prot	c0.30		0.18			c0.37		
v/s Ratio Perm		0.01						
v/c Ratio	0.89	0.02	0.31			0.63		
Uniform Delay, d1	34.6	24.4	11.2			14.7		
Progression Factor	1.00	1.00	0.63			0.74		
Incremental Delay, d2	15.5	0.0	0.4			2.6		
Delay (s)	50.0	24.4	7.5			13.4		
Level of Service	D	С	А			В		
Approach Delay (s)	49.6		7.5			13.4		
Approach LOS	D		А			В		
Intersection Summary								
HCM Average Control D)elay		21.8	H	ICM Lev	el of Servi	ice	С
HCM Volume to Capacit	ty ratio		0.72					
Actuated Cycle Length ((s)		110.0	S	um of lo	ost time (s))	8.0
Intersection Capacity Ut	ilization		72.6%	IC	CU Leve	el of Servic	е	С
c Critical Lane Group								

c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis 4: Sterrett & Madison Avenue

5/6/2008	
----------	--

	٠		~	~	-	•	•	ŧ	*	1	Ţ	1
Movement	EBL	EBŤ	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations												
Sign Control		Stop			Stop			Fre💠	1	<u>۲</u>	Frep	
Grade		0%			0%			0%			0%	
Volume (veh/h)	2	0	5	0	0	0	0	478	163	20	941	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	2	0	5	0	0	0	0	520	177	22	1023	2
Pedestrians								1				
Lane Width (ft)								12.0				
Walking Speed (ft/s)								4.0				
Percent Blockage								0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)											565	
pX, platoon unblocked	0.77	0.77	0.77	0.77	0.77		0.77					
vC, conflicting volume	1587	1764	1025	1592	1588	520	1025			697		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1766	1998	1033	1773	1768	520	1033			697		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	96	100	97	100	100	100	100			98		
cM capacity (veh/h)	49	45	216	47	62	556	515			899		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	8	0	520	177	22	1025						
Volume Left	2	0	0	0	22	0						
Volume Right	5	0	0	177	0	2						
cSH	110	1700	1700	1700	899	1700						
Volume to Capacity	0.07	0.00	0.31	0.10	0.02	0.60						
Queue Length (ft)	5	0	0	0	2	0						
Control Delay (s)	40.3	0.0	0.0	0.0	9.1	0.0						
Lane LOS	E	А			А							
Approach Delay (s)	40.3	0.0	0.0		0.2							
Approach LOS	E	А										
Intersection Summary												
Average Delay			0.3									
Intersection Capacity Uti	ilization		64.0%	10	CU Leve	el of Ser	vice		В			

	٠		~	~	-	•	•	+	*	5	1	1
Movement	ÉBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations												
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	190	1900	1900	1900	1900	190	1900
Total Lost time (s)		4.0			4.0	4.0		4.0		4.0	4.0	
Lane Util. Factor		1.00			1.00	1.00		0.95		1.00	1.00	
Frt		0.97			1.00	0.85		0.99		1.00	0.99	
Flt Protected		0.97			0.96	1.00		1.00		0.95	1.00	
Satd. Flow (prot)		1767			1781	1583		3507		1770	1840	
Flt Permitted		0.81			0.77	1.00		0.95		0.44	1.00	
Satd. Flow (perm)		1469			1438	1583		3341		813	1840	
Volume (vph)	22	10	7	76	6	101	4	491	30	68	525	46
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	24	11	8	83	7	110	4	534	33	74	571	50
Lane Group Flow (vph)	0	43	0	0	90	110	0	571	0	74	621	0
Turn Type	Perm			Perm		Perm	Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		11.8			11.8	11.8		88.2		88.2	88.2	
Effective Green, g (s)		12.8			12.8	12.8		89.2		89.2	89.2	
Actuated g/C Ratio		0.12			0.12	0.12		0.81		0.81	0.81	
Clearance Time (s)		5.0			5.0	5.0		5.0		5.0	5.0	
Vehicle Extension (s)		3.0			3.0	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)		171			167	184		2709		659	1492	
v/s Ratio Prot											c0.34	
v/s Ratio Perm		0.03			0.06	c0.07		0.17		0.09		
v/c Ratio		0.25			0.54	0.60		0.21		0.11	0.42	
Uniform Delay, d1		44.2			45.8	46.2		2.4		2.2	3.0	
Progression Factor		1.00			1.00	1.00		0.19		0.44	0.39	
Incremental Delay, d2		0.8			3.3	5.1		0.2		0.3	0.7	
Delay (s)		45.0			49.1	51.3		0.6		1.2	1.8	
Level of Service		D			D	D		Α		Α	Α	
Approach Delay (s)		45.0			50.3			0.6			1.8	
Approach LOS		D			D			А			А	
Intersection Summary												
HCM Average Control D	elav		9.0	F	ICM Le	vel of Se	ervice		А			
HCM Volume to Capacit	v ratio		0.44									
Actuated Cycle Length (s)		110.0	S	um of l	ost time	(s)		8.0			
Intersection Capacity Ut	ilization		70.6%	10	CU Leve	el of Sei	vice		С			
c Critical Lane Group												

	≯	\sim	•	+ +	1	1		
Movement	ĒBL	EBR	NBL	NB	SBT	SBR		
Lane Configurations								
Ideal Flow (vphpl)	1900	190	1900	1900	190	1900		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	0.96			
Flt Protected	0.95	1.00	0.95	1.00	1.00			
Satd. Flow (prot)	1770	1583	1770	1863	1784			
Flt Permitted	0.95	1.00	0.20	1.00	1.00			
Satd. Flow (perm)	1770	1583	381	1863	1784			
Volume (vph)	285	281	186	470	485	220		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	310	305	202	511	527	239		
Lane Group Flow (vph)	310	305	202	511	766	0		
Turn Type		Perm	pm+pt					
Protected Phases	4		5	2	6			
Permitted Phases		4	2					
Actuated Green, G (s)	22.7	22.7	78.3	77.3	62.3			
Effective Green, g (s)	23.7	23.7	78.3	78.3	63.3			
Actuated g/C Ratio	0.22	0.22	0.71	0.71	0.58			
Clearance Time (s)	5.0	5.0	4.0	5.0	5.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	381	341	410	1326	1027			
v/s Ratio Prot	0.18		c0.05	0.27	c0.43			
v/s Ratio Perm		c0.19	0.30					
v/c Ratio	0.81	0.89	0.49	0.39	0.75			
Uniform Delay, d1	41.0	41.9	24.8	6.3	17.4			
Progression Factor	1.00	1.00	0.39	0.33	1.00			
Incremental Delay, d2	12.5	24.4	0.9	0.8	4.9			
Delay (s)	53.5	66.3	10.6	2.9	22.3			
Level of Service	D	E	В	Α	С			
Approach Delay (s)	59.9			5.1	22.3			
Approach LOS	E			А	С			
Intersection Summary								
HCM Average Control D	elav		27.5	ŀ	ICM Lev	el of Service	С	
HCM Volume to Capacit	ty ratio		0.73					
Actuated Cycle Length (s)		110.0	S	Sum of lo	ost time (s)	8.0	
Intersection Capacity Ut	ilization	1	80.7%	I	CU Leve	el of Service	D	
c Critical Lane Group								

Movement		➡				WEI						
	EDL	EDI	EDK	EDRZ	VVDLZ	VVDL	VVDI	VVDR	INDL	INDI	INDK	JDLZ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1000	1900	1900
Total Lost time (s)	1300	4.0	1300	1300	1300	1300	4.0	1300	1300	4.0	1300	1300
Lane Util Eactor		1 00					1 00			*0.88		
Frt		0.95					1.00			1.00		
Flt Protected		0.98					0.95			0.99		
Satd. Flow (prot)		1735					1774			3248		
Flt Permitted		0.98					0.66			0.99		
Satd. Flow (perm)		1735					1221			3248		
Volume (vph)	29	28	19	19	56	56	2	1	65	356	5	27
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	32	30	21	21	61	61	2	1	71	387	5	29
Lane Group Flow (vph)	0	104	0	0	0	0	125	0	0	463	0	0
Turn Type	Split				Split	Perm		С	ustom			Perm
Protected Phases	4	4			8		8		10	10		
Permitted Phases					-	8	-		10	10		6
Actuated Green, G (s)		11.2					14.2			17.6		
Effective Green, g (s)		12.2					15.2			18.6		
Actuated g/C Ratio		0.11					0.14			0.17		
Clearance Time (s)		5.0					5.0			5.0		
Vehicle Extension (s)		3.0					3.0			3.0		
Lane Grp Cap (vph)		192					169			549		
v/s Ratio Prot		c0.06								c0.14		
v/s Ratio Perm							c0.10					
v/c Ratio		0.54					0.74			0.84		
Uniform Delay, d1		46.3					45.5			44.3		
Progression Factor		1.00					1.00			1.00		
Incremental Delay, d2		3.1					15.5			11.3		
Delay (s)		49.4					61.0			55.6		
Level of Service		D					Е			E		
Approach Delay (s)		49.4					61.0			55.6		
Approach LOS		D					E			E		
Intersection Summary												
HCM Average Control D	elay		34.2	ŀ	ICM Lev	vel of Se	ervice		С			
HCM Volume to Capacit	y ratio		0.72									
Actuated Cycle Length (s)		110.0	S	Sum of l	ost time	(s)		16.0			
Intersection Capacity Uti	lization		80.0%		CU Leve	el of Ser	vice		D			
c Critical Lane Group												

5/6/2008

	L	Ţ	1	*	•
Movement	SBL	SBT	SBR	NWL	NWŔ
Lane Configurations					
Ideal Flow (vphpl)	190	190 <mark>1</mark> 3	1900	190	1900
Total Lost time (s)	4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00		1.00	*0.88
Frt	1.00	0.99		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00
Satd. Flow (prot)	1770	1845		1770	2787
Flt Permitted	0.97	1.00		0.29	1.00
Satd. Flow (perm)	1800	1845		542	2787
Volume (vph)	424	489	34	65	262
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	461	532	37	71	285
Lane Group Flow (vph)	490	569	0	71	285
Turn Type	Perm			C	ustom
Protected Phases		6			2
Permitted Phases	6			2	2
Actuated Green, G (s)	47.0	47.0		47.0	47.0
Effective Green, a (s)	48.0	48.0		48.0	48.0
Actuated g/C Ratio	0.44	0.44		0.44	0.44
Clearance Time (s)	5.0	5.0		5.0	5.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	785	805		237	1216
v/s Ratio Prot		c0.31			0.10
v/s Ratio Perm	0.27	30.01		0.13	00
v/c Ratio	0.62	0.71		0.30	0.23
Uniform Delay, d1	24.0	25.3		20.1	19.5
Progression Factor	0.93	0.93		1.00	1.00
Incremental Delay d2	1.3	24		32	0.5
Delay (s)	23.7	25.8		23.3	19.9
Level of Service	C			_0.0	B
Approach Delay (s)	J	24.8		20.6	_
Approach LOS		C		C	
		1		1	
Intersection Summary					

Appendix C Recommended Alternative

R

do Chi

ID TO B

th Street

-

20th Street

-

1

E

EE

HERE E

-

Br

- 17

Madison Avenue Transportation Study Recommended Alternative 24th Street to 25th Street Sheet 3 of 4

COLUMN / TO

reet

esde

25th Street

Sheet 4 of 4