What is a Modern Roundabout?

An Overview and Introduction

Presented by: NKAPC and DLZ Corporation 1/10/05

Topics

- General Terminology
- Comparison to Traffic Circles
- Video Clips
- General Information
- Applications and Examples

Roundabout Terminology

What is a Modern Roundabout?

- Many misperceptions
- Not simply a circular intersection
- All <u>true</u> roundabouts include:
 - Circular roadway
 - Yield at entry
 - Low speeds due to curvature
 - Precisely designed based on local peak hour traffic volumes
- Great variety
- Not the same as traffic circles

What are the Differences?

- <u>Classic Traffic Circle ("Rotary")</u>
 - Large diameter high circulating speeds
 - Shallow angle entry merge high entry speeds
 - High speed weaving to exit
- Modern Roundabout
 - Small diameter low circulating speeds
 - Larger entry angle with yield lower entry speeds
 - No weaving/lane changing
- <u>Hybrid</u>
 - Many U.S. traffic circles

Kingston, NY – Traffic Circle

Kingston, NY – Traffic Circle Conversion to Roundabout

Example of Modern Roundabout

Practical Differences

- Traffic Circles:
 - More crashes when volumes increase can exceed signal
 - Congestion (capacity determined by weave/merge)
 - Gridlock
- Roundabouts:
 - Opposite of traffic circles
 - Low crashes
 - No congestion (capacity determined by geometry)
 - Promising at many intersections

Marsh - Hamilton Roundabout

Colorado Roundabout

Please Note:

•2 lanes

- •Downstream gaps available
- •Low speeds real time
- •Minimal delays/backups
- •Signal platoon arrival
- •Aesthetic enhancements

Traffic Circle Video Clip

Roundabouts: Pros and Cons

• Pros

- Good traffic operations/low delays
- Very safe when designed properly
- Look attractive
- Slows all traffic calming effect
- Low maintenance cost
- Easily modified
- Construction cost (no need to widen approach roads)
- Cons
 - Bicyclists should not circulate in roundabout
 - Blind pedestrians have expressed concern
 - Construction cost/ROW requirements at intersection
 - Learning curve for drivers uncertainty
 - Improper design can cause problems

Other General Information

- Hundreds of roundabouts constructed over last 10 years in U.S.
- One, two, and three lane entries (complexity varies)
- Drivers have quickly adapted where constructed elsewhere in U.S. (including older drivers)
- Can be designed to accommodate large trucks
- U.S./international studies have shown when signals/stop control replaced with roundabouts:
 - Reduction in overall crashes
 - Large reduction in injury crashes
 - Large reduction in serious injury/fatality crashes

Roundabout Locations

Useful Applications

- Safety problems
- Capacity problems
- Closely spaced intersections
- Unusual geometry
- Residential areas traffic calming
- Locations where signal would require bridge widening/lengthening – Interchanges and rail
- Locations where sight triangles are obscured for signals
- Gateways
- Retrofitting existing intersections

High Speed Rural Locations Maryland Roundabout Tour MD 213 at Leeds Road AADT 8,125 (1997) YIELD Complete in Aug 1995 - first roundabout High speed rural **Single Lane** Landscape maintained by father of child killed before roundabout

High Speed Rural - Kansas

Skewed Intersections - Safety

Congested Intersections

Urban 2 Lane

Aesthetic improvements

Context sensitive – partner with community

Lots of landscaping and lights

ADA pedestrian facilities

Closely Spaced Interchange

Residential Areas

Residential Areas

Gateway Entrance

Freeway Interchanges

Constraint – Interchange Bridge

Freeway Interchanges

- Note how tight the ramps/roundabout are to the bridge
- Compared to signals with turn lanes
 Roundabout saved significant \$ with narrower bridge

Freeway Interchanges

3-Lane Roundabout at Interchange

3-Lane Roundabout at Interchange

Freeway Interchanges

Single Lane Roundabouts at Diamond Interchange in Maryland – Similar to MDOT's concept for M-81 and I-75 Interchange near Saginaw

Tight Constraint – Rail Bridge

Tight Constraint – Mini Roundabout

Longton Old Rd Mini/Urban Compact

Tight Constraints – Urban Compact

Context Sensitive – Light Rail

Bypass Lanes – 3 Lane Roundabout

How Not to Drive a Roundabout

How to Drive a Roundabout

- Basic concepts identical to traffic signal
- Signs and pavement markings will guide you
- Select your lane before the yield line
- Yield to traffic within the roundabout before entering
- Stay in the same lane as you enter, circulate and exit
- Do not change lanes or weave
- Left turns are made from the left (inside) approach
 lane
- Allow adequate space for large trucks
- Yield to pedestrians in the crosswalks

Roundabouts vs. Traffic Signals

- No simple answer ... Hard to generalize
- Depends on cost / benefit analysis
- Sometimes one fits ROW far better
- Large left turn flows = Roundabout?
- Low turning flows = Traffic Signals?
- Safety = Roundabout (far less PIAs)
- Need to assess and compare alternatives
- Roundabouts & Signals are complimentary
- Roundabouts are not suited for all locations

Credits

- R. Barry Crown, Rodel Software Limited miscellaneous information adapted for use in several slides
- NYDOT photo of Kingston roundabout and map of roundabout locations
- Dave Sonnenberg photo of Marsh Hamilton roundabout
- Edmund Waddell photo of Dimondale mini-roundabout
- Terry Palmer photos of Maryland roundabouts

Select Topics

Presented by: NKAPC and DLZ Corporation 1/10/05

Topics

- Safety
- Pavement Markings
- Trucks
- Pedestrians
- Public Education
- Madison Pike Preliminary Evaluation
- Questions

General Information

Type of Roundabout	Typical ICD	Typical Maximum Volume	Comments
Mini	< 95 feet	Varies	 Very high capacity for size Only where speeds < 30 mph Traversable central island 1-3 lanes
Compact Urban	< 130 feet	Varies	 Only where speeds < 30 mph Central island not traversable 1-2 lanes
Conventional Medium and Large	> 130 feet	Varies	Speeds up to 70 mphFlared or parallel approaches1-3 lanes, 4 lanes possible
Single Lane	100 – 160 feet	Up to 2,000 vph	Most common in U.S.Relatively simple to design
Two Lane	150 – 210 feet	Up to 4,000 vph	 Moderately to very complex
Three Lane	210 – 250 feet	4,000+ vph	•Very complex
Four Lane	210 – 250 feet	4,000+ vph	•Usually just one entry

Safety Statistics - Automobiles

- Conversion from stop/signal to roundabout
- Persaud et. al. (Insurance Institute for Highway Safety), 2000 (U.S.)
 - 23 US intersections studied
 - 40% reduction in total crash frequency
 - 80% reduction in injury crash frequency
 - 90% reduction in fatal and incap. injury crash frequency
 - Changes to rate similar
 - Avg age of drivers involved in crashes did not increase
- 2002 intersection statistics in Michigan
 - 373 fatalities (29% of all fatalities)
 - 4,000 incapacitating injuries (38% of all incapacitating inj's)
- Many other studies with similar results

Conflict Points

CONFLICTS

Safety and Lane Use

- Problem: Improper lane use at multi-lane roundabouts causes exit crashes
 - Most common crash problem at U.S. multi-lane roundabouts
 - no pavement markings or improper markings
 - Related to driver unfamiliarity
- Examples
 - Clearwater, Florida (highly publicized)
 - Converted traffic circle on MSU campus

Left Turn at Roundabout

Left Turn at Traffic Signal

- Exceptional safety example
- Opened midnight on 31st December 1999
- Two lane roundabout
- An Australian/German style design using SLR techniques
 - Very small entry and exit radii
 - Very large entry and exit angles
- 300 crashes in first 6 months
- Over 500 crashes in first 18 months
- Low severity
- Two crash locations

Before and After

- Spiral striping
- Flattened exit radius moved curb
- Larger entry angle creates safe entry conflict
- Fountain ripped out
- Moved crosswalks
- Crashes dramatically dropped only 3 minor crashes in 15 months following changes

- The cost:
 - City Manager lost job
 - \$1-2 M property damage
 - Bad publicity about roundabouts WSJ article
 - \$400,000 in reconstruction costs
 - Other roundabouts not constructed as a result = more injuries and deaths elsewhere
- The lessons:
 - Plan for suppressed traffic demand
 - Proper design techniques crucial
 - Appropriate pavement markings are powerful
 - Multi-lane roundabouts require experienced designers

Pavement Markings

- Pavement markings work together with roundabout signing and design
- Provide guidance to motorists
 - Approaching
 - Circulating
 - Exiting
- Goal is to enhance roundabout safety and operations and address problems
- Wide variety of applications

Definitions

Benefits of Markings

- Why markings at MLRs?
 - Improve safety and traffic operations
 - Guide motorists from approaches to exits without changing lanes/weaving – <u>solves 95% of problems</u>
 - Makes driving roundabouts easy for motorists
 - Educates drivers about lane use
 - Self regulating
 - Lane discipline reduces speeds
 - Crucial for some intersections will not work without it

Concerns with Markings

- Why not markings at MLRs?
 - Not appropriate in all situations conflicting AM and PM turning patterns can preclude
 - Some intersections work fine without
 - Lots of misinformation out there
 - Many ways to get it wrong
- Like fire powerful and beneficial, but dangerous if used improperly

Trucks at Roundabouts

- Roundabouts can be designed to accommodate all types of trucks, including emergency vehicles
- Can require truck apron in central island
- Test using software such as Autoturn
- Video clips from actual roundabouts
- Also assure emergency vehicles can negotiate (especially large fire trucks)

Okemos Roundabout

Maryland Roundabout

Maryland Roundabout

Pedestrian Safety

- Roundabouts shown to be safer than other types of intersections (signals, stop control)
- Function of vehicle speeds on approach and departure (low speed for roundabouts)
- Design is crucial element in safety (entry and exit radii)
- Only cross one direction of traffic at a time
- Motorists deal with pedestrian crossing separate from entering roundabout

Statistics – Pedestrians & Bicycles

- US minimal information anecdotal
- Tumber, 1997 (Australia)
 - Most ped crashes on approaches and in circulating road (less at exits)
 - Severity of ped crashes lower than other intersection types
- Peel, 2002 (U.K.)
 - Crash rates for bicyclists significantly higher than traffic signals when they circulate inside roundabout
- Brude, 1997 (Sweden)
 - Single lane roundabouts safer than multi-laners for both peds and bicyclists
- Lalani, 1975 (U.K.)
 - Ped crash frequency dropped 46% after conversion to roundabouts
 - Fatal and serious ped crash frequency dropped 70%

Crosswalks

- Located one to three vehicle lengths BEHIND the yield line
- Pedestrians cross BEHIND the vehicle waiting to enter.
- Refuge on splitter island and need only look one way when crossing

Exit Speeds and Pedestrian Safety

Pedestrians – MSU

Blind Pedestrians

- Blind US pedestrians not used to roundabouts have raised concerns
 - Quieter, so traffic is harder to hear
 - Harder to differentiate exiting and circulating cars
 - They may learn to do this?
- UK no notable problems
- Options include
 - Signalized crosswalks with auditory cues
 - Tactile paving
 - Split crosswalk with barriers (shorter walk time, timings more flexible)
- Questions
 - Will green crosswalk light confuse drivers in US?
 - What is the impact on entry capacity?
 - What about exit capacity?

Blind Pedestrians

- Cost of signalized crosswalk ~ \$100,000
- May lead to signals constructed where roundabouts would have been otherwise
- Net injuries are more than with a Roundabout
 - Blind benefit, but
 - Non-blind motorists have an increase in injuries
- Need for balance
 - When peds are too few for signalized crosswalk
 - Blind volumes are extremely low or nonexistent
- Access Board draft guidelines controversy
- Issue still unresolved needs further debate

Public Opinion – Before and After

Reasons for Opinions

- 1. Unfamiliar technology
- 2. Bad experience with circles
- 3. Don't believe in benefits
- 4. Always used signals and know how to use them
- 1. Familiar after use
- 2. Positive experiences with roundabouts
- 3. Witness the benefits
- 4. Learn to avoid signals after using roundabouts

Public Education

- Very important
- During studies, prior to construction
- Many misperceptions (traffic circles, etc.)
- Variety of tools tailor to situation at hand
 - Photos
 - Videos
 - Simulations
 - Media outlets
 - Meetings
 - Graphics
 - Radio stations
 - Expertise

Photos - Aesthetics

Graphics

Expertise

- Complex problems, especially MLRs
- Many ways to get it wrong
- Consequences can be serious:
 - Clearwater, FL
 - Oregon roundabout (article in Appendix)
- Have adequate expertise on your project team, even if just in review capacity

Videos

- Many videos exist that show the "real" story
 - Avon Valley : series of roundabouts
 - Santa Barbara, CA : converted traffic circle on Pacific Coast Highway
 - Lacey, Washington (Link in Appendix)
 - Dublin, OH video

Simulations

Other Graphics

Aesthetics

2020 No Build Traffic Delays Afternoon Rush Hour

Initial Assessment of Madison Pike Roundabouts

Preliminary Thoughts and Ideas

Background

- Madison Pike (KY 17)
- Primary non-interstate north-south route in Kenton County
- Substantial residential and commercial growth projected for corridor
- Comprehensive study within City of Fort Wright
- Madison Pike Corridor Land Use and Economic Development Plan
- 2.4-mile segment along KY-17 includes I-275 interchange
- Transportation elements included in plan
- Two roundabouts under consideration northern and Southern locations

General Locations

Northern Roundabout

Northern Roundabout

- 5-lane existing cross section on Madison Pike
- Entrance to TANK is east leg
- West leg would be new access road
- New Wal-Mart near here
- Traffic volumes currently about 24,000/day (2 directional)
- Minimum of 2-lane roundabout (diameter = 150-180 feet)
- May need 3-lane roundabout (diameter = 210-250 feet)
- Need will be based on 20-year traffic projections
- Relatively complex design

Northern Roundabout

Directional photos from roundabout location (North to top)

Southern Roundabout

Southern Roundabout

- 4-lane existing cross section with median & 5-lane
- Location is flexible
- West leg new access road connecting to Old Madison Pike
- Traffic volumes currently about 38,000/day (2 directional)
- Likely need 3-lane roundabout (diameter = 210-250 feet)
- Need will be based on 20-year traffic projections
- Relatively complex design

Southern Roundabout

Directional photos from roundabout location (north to top)

General Conclusions

- Appear to be good locations for roundabouts
- Need detailed feasibility evaluation with concepts
- Opportunities to integrate non-motorized facilities
- Could be attractive gateway into area
- TANK's needs can be met if integrated into concept development
- Can be designed for good traffic operations and safety
- Stakeholder and public education are key
- Important for access management strategy
 - Narrow, non traversable median
 - U-turns
 - Helps preserve overall corridor capacity

General Conclusions

- Potential issues:
 - Grades/vertical profile
 - 20-year traffic projections
 - Interaction with adjacent traffic signals
 - Minimizing ROW impacts
 - Integration into access management plan
 - Very important to get proper expertise these designs are complex!
 - Public education
 - Accommodation of trucks/TANK busses
 - Coordination with key stakeholders, especially KTC
 - Accommodation of non-motorized facilities

